
The Java API for XML-Based Web
Services

(JAX-WS) 2.0

Final Release
April 19, 2006

Editors:
Roberto Chinnici

Marc Hadley
Rajiv Mordani

Comments to: jsr224-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054 USA

ii JAX-WS 2.0 April 19, 2006

Specification: JSR-000224 - Java™API for XML-Based Web Services (“Specification”)

Version: 2.0

Status: Final Release

Release: 19 April 2006
Copyright 2006 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under Sun’s applicable intellectual property rights to view, download,
use and reproduce the Specification only for the purpose of internal evaluation. This includes (i) developing appli-
cations intended to run on an implementation of the Specification, provided that such applications do not themselves
implement any portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) ex-
cerpting brief portions of the Specification in oral or written communications which discuss the Specification provided
that such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-exclusive, non-
transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applica-
ble copyrights or, subject to the provisions of subsection 4below, patent rights it may have covering the Specification
to create and/or distribute an Independent Implementationof the Specification that: (a) fully implements the Specifi-
cation including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise extend
the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods
within the Licensor Name Space other than those required/authorized by the Specification or Specifications being
implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the appli-
cable TCK Users Guide) for such Specification (“Compliant Implementation”). In addition, the foregoing license is
expressly conditioned on your not acting outside its scope.No license is granted hereunder for any other purpose
(including, for example, modifying the Specification, other than to the extent of your fair use rights, or distributing
the Specification to third parties). Also, no right, title, or interest in or to any trademarks, service marks, or trade
names of Sun or Sun’s licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previousparagraph or any other partic-
ular “pass through”requirements in any license You grant concerning the use of your Independent Implementation or
products derived from it. However, except with respect to Independent Implementations (and products derived from
them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass through
to your licensees any licenses under Sun’s applicable intellectual property rights; nor (b) authorize your licensees to
make any claims concerning their implementation’s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed
by all technically feasible implementations of the Specification, such license is conditioned upon your offering on
fair, reasonable and non-discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive, non-
transferable, worldwide license under Your patent rights which are or would be infringed by all technically feasible
implementations of the Specification to develop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered bythe license granted under subparagraph 2, whether
or not their infringement can be avoided in a technically feasible manner when implementing the Specification, such
license shall terminate with respect to such claims if You initiate a claim against Sun that it has, in the course of
performing its responsibilities as the Specification Lead,induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2
above, where the infringement of such claims can be avoided in a technically feasible manner when implementing

April 19, 2006 JAX-WS 2.0 iii

the Specification such license, with respect to such claims,shall terminate if You initiate a claim against Sun that its
making, having made, using, offering to sell, selling or importing a Compliant Implementation infringes Your patent
rights.

5. Definitions. For the purposes of this Agreement: “Independent Implementation”shall mean an implementation
of the Specification that neither derives from any of Sun’s source code or binary code materials nor, except with an
appropriate and separate license from Sun, includes any of Sun’s source code or binary code materials; “Licensor Name
Space”shall mean the public class or interface declarations whose names begin with “java”, “javax”, “com.sun”or
their equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof; and “Technology Compatibility Kit”or “TCK”shall mean the test suite
and accompanying TCK User’s Guide provided by Sun which corresponds to the Specification and that was available
either (i) from Sun’s 120 days before the first release of YourIndependent Implementation that allows its use for
commercial purposes, or (ii) more recently than 120 days from such release but against which You elect to test Your
implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act outside the
scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS IS”. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EI-
THER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE
OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), ORTHAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to
release or implement any portion of the Specification in any product. In addition, the Specification could include
technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITSLICENSORS BE LIABLE
FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVEDAMAGES, HOWEVER CAUSED
AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO
YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION, EVEN IF SUN AND/OR
ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your
use of the Specification; (ii) the use or distribution of yourJava application, applet and/or implementation; and/or (iii)
any claims that later versions or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Gov-
ernment prime contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompa-
nying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitions)and with 48 C.F.R. 2.101 and 12.212 (for non-DoD ac-
quisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification (“Feedback”), you hereby: (i)
agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels of
sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N.
Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other

iv JAX-WS 2.0 April 19, 2006

countries. Licensee agrees to comply strictly with all suchlaws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating toits subject matter. It supersedes all prior or contempo-
raneous oral or written communications, proposals, conditions, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other communication between the parties
relating to its subject matter during the term of this Agreement. No modification to this Agreement will be binding,
unless in writing and signed by an authorized representative of each party.

Rev. April, 2006

Sun/Final/Full

April 19, 2006 JAX-WS 2.0 v

vi JAX-WS 2.0 April 19, 2006

Document Status

This section describes the status of this document at the time of its publication. Other documents may
supersede this document; the latest revision of this document can be found on the JSR 224 homepage at
http://www.jcp.org/en/jsr/detail?id=224. This is the Proposed Final Draft of JSR 224 (JAX-
WS 2.0). It has been produced by the JSR 224 expert group. Comments on this document are welcome,
send them tojsr224-spec-comments@sun.com.

April 19, 2006 JAX-WS 2.0 vii

viii JAX-WS 2.0 April 19, 2006

Contents

1 Introduction 1

1.1 Goals 1

1.2 Non-Goals 3

1.3 Requirements 3

1.3.1 Relationship To JAXB 3

1.3.2 Standardized WSDL Mapping 3

1.3.3 Customizable WSDL Mapping 4

1.3.4 Standardized Protocol Bindings 4

1.3.5 Standardized Transport Bindings 4

1.3.6 Standardized Handler Framework 4

1.3.7 Versioning and Evolution 5

1.3.8 Standardized Synchronous and Asynchronous Invocation 5

1.3.9 Session Management 5

1.4 Use Cases 5

1.4.1 Handler Framework 5

1.5 Conventions 6

1.6 Expert Group Members 7

1.7 Acknowledgements 7

2 WSDL 1.1 to Java Mapping 9

2.1 Definitions 9

2.1.1 Extensibility 10

2.2 Port Type 10

2.3 Operation 10

2.3.1 Message and Part 11

2.3.2 Parameter Order and Return Type 15

2.3.3 Holder Class 15

April 19, 2006 JAX-WS 2.0 ix

2.3.4 Asynchrony 16

2.4 Types 20

2.5 Fault 21

2.5.1 Example .. 21

2.6 Binding 23

2.6.1 General Considerations 23

2.6.2 SOAP Binding .. . 23

2.6.3 MIME Binding .. . 24

2.7 Service and Port 26

2.7.1 Example .. 27

2.8 XML Names .. . 28

2.8.1 Name Collisions 28

3 Java to WSDL 1.1 Mapping 29

3.1 Java Names 29

3.1.1 Name Collisions 29

3.2 Package 29

3.3 Class 30

3.4 Interface 31

3.4.1 Inheritance 31

3.5 Method 31

3.5.1 One Way Operations 32

3.6 Method Parameters and Return Type 32

3.6.1 Parameter and Return Type Classification 35

3.6.2 Use of JAXB .. 36

3.7 Service Specific Exception 39

3.8 Bindings 40

3.8.1 Interface 40

3.8.2 Method and Parameters 41

3.9 Generics 41

3.10 SOAP HTTP Binding 44

3.10.1 Interface 44

3.10.2 Method and Parameters 45

3.11 Service and Ports 45

x JAX-WS 2.0 April 19, 2006

4 Client APIs 49

4.1 javax.xml.ws.Service 49

4.1.1 Service Usage 50

4.1.2 Provider and Service Delegate 51

4.1.3 Handler Resolver 51

4.1.4 Executor .. . 52

4.2 javax.xml.ws.BindingProvider 52

4.2.1 Configuration 52

4.2.2 Asynchronous Operations 54

4.2.3 Proxies .. . 55

4.2.4 Exceptions 56

4.3 javax.xml.ws.Dispatch 56

4.3.1 Configuration 57

4.3.2 Operation Invocation 58

4.3.3 Asynchronous Response 58

4.3.4 Using JAXB .. 59

4.3.5 Examples .. . 59

4.4 Catalog Facility 61

5 Service APIs 63

5.1 javax.xml.ws.Provider 63

5.1.1 Invocation 64

5.1.2 Configuration 64

5.1.3 Examples .. . 64

5.2 javax.xml.ws.Endpoint 65

5.2.1 Endpoint Usage 65

5.2.2 Publishing 66

5.2.3 Publishing Permission 68

5.2.4 Endpoint Metadata 68

5.2.5 Determining the Contract for an Endpoint 68

5.2.6 Endpoint Properties 72

5.2.7 Executor .. . 72

5.3 javax.xml.ws.WebServiceContext 73

5.3.1 MessageContext 74

April 19, 2006 JAX-WS 2.0 xi

6 Core APIs 75

6.1 javax.xml.ws.Binding 75

6.2 javax.xml.ws.spi.Provider 75

6.2.1 Configuration 76

6.2.2 Creating Endpoint Objects 76

6.2.3 Creating ServiceDelegate Objects 77

6.3 javax.xml.ws.spi.ServiceDelegate 77

6.4 Exceptions 77

6.4.1 Protocol Specific Exception Handling 77

6.4.2 One-way Operations 78

7 Annotations 79

7.1 javax.xml.ws.ServiceMode 79

7.2 javax.xml.ws.WebFault 80

7.3 javax.xml.ws.RequestWrapper 80

7.4 javax.xml.ws.ResponseWrapper 81

7.5 javax.xml.ws.WebServiceClient 81

7.6 javax.xml.ws.WebEndpoint 81

7.6.1 Example .. 82

7.7 javax.xml.ws.WebServiceProvider 82

7.8 javax.xml.ws.BindingType 83

7.9 javax.xml.ws.WebServiceRef 83

7.9.1 Example .. 84

7.10 javax.xml.ws.WebServiceRefs 85

7.10.1 Example .. . 85

7.11 Annotations Defined by JSR-181 85

7.11.1 javax.jws.WebService 86

7.11.2 javax.jws.WebMethod 86

7.11.3 javax.jws.OneWay 86

7.11.4 javax.jws.WebParam 86

7.11.5 javax.jws.WebResult 86

7.11.6 javax.jws.SOAPBinding 87

7.11.7 javax.jws.HandlerChain 87

8 Customizations 89

xii JAX-WS 2.0 April 19, 2006

8.1 Binding Language 89

8.2 Binding Declaration Container 89

8.3 Embedded Binding Declarations 90

8.3.1 Example .. 90

8.4 External Binding File 90

8.4.1 Example .. 92

8.5 Using JAXB Binding Declarations 92

8.6 Scoping of Bindings 94

8.7 Standard Binding Declarations 94

8.7.1 Definitions 94

8.7.2 PortType .. . 95

8.7.3 PortType Operation 96

8.7.4 PortType Fault Message 97

8.7.5 Binding .. . 97

8.7.6 Binding Operation 97

8.7.7 Service .. . 98

8.7.8 Port .. 98

9 Handler Framework 101

9.1 Architecture 101

9.1.1 Types of Handler 101

9.1.2 Binding Responsibilities 102

9.2 Configuration 104

9.2.1 Programmatic Configuration 104

9.2.2 Deployment Model 106

9.3 Processing Model 106

9.3.1 Handler Lifecycle 106

9.3.2 Handler Execution 107

9.3.3 Handler Implementation Considerations 109

9.4 Message Context 109

9.4.1 javax.xml.ws.handler.MessageContext 110

9.4.2 javax.xml.ws.handler.LogicalMessageContext 110

9.4.3 Relationship to Application Contexts 113

10 SOAP Binding 115

April 19, 2006 JAX-WS 2.0 xiii

10.1 Configuration 115

10.1.1 Programmatic Configuration 115

10.1.2 Deployment Model 117

10.2 Processing Model 117

10.2.1 SOAPmustUnderstand Processing . 117

10.2.2 Exception Handling 118

10.3 SOAP Message Context 119

10.4 SOAP Transport and Transfer Bindings 119

10.4.1 HTTP .. 119

11 HTTP Binding 123

11.1 Configuration 123

11.1.1 Programmatic Configuration 123

11.1.2 Deployment Model 124

11.2 Processing Model 124

11.2.1 Exception Handling 124

11.3 HTTP Support 125

11.3.1 One-way Operations 125

11.3.2 Security 126

11.3.3 Session Management 126

A Conformance Requirements 127

Bibliography 133

xiv JAX-WS 2.0 April 19, 2006

Chapter 1

Introduction

XML[1] is a platform-independent means of representing structured information. XML Web Services use
XML as the basis for communication between Web-based services and clients of those services and inherit
XML’s platform independence. SOAP[2, 3, 4] describes one such XML based message format and “defines,
using XML technologies, an extensible messaging frameworkcontaining a message construct that can be
exchanged over a variety of underlying protocols.”

WSDL[5] is “an XML format for describing network services asa set of endpoints operating on messages
containing either document-oriented or procedure-oriented information.” WSDL can be considered the de-
facto service description language for XML Web Services.

JAX-RPC 1.0[6] defined APIs and conventions for supportingRPC oriented XML Web Services in the
Java™ platform. JAX-RPC 1.1[7] added support for the WS-I Basic Profile 1.0[8] to improve interoperabil-
ity between JAX-RPC implementations and with services implemented using other technologies.

JAX-WS 2.0 (this specification) is a follow-on to JAX-RPC 1.1, extending it as described in the following
sections.

1.1 Goals

Since the release of JAX-RPC 1.0[6], new specifications andnew versions of the standards it depends on
have been released. JAX-WS 2.0 relates to these specifications and standards as follows:

JAXB Due primarily to scheduling concerns, JAX-RPC 1.0 defined its own data binding facilities. With
the release of JAXB 1.0[9] there is no reason to maintain two separate sets of XML mapping rules
in the Java™ platform. JAX-WS 2.0 will delegate data binding-related tasks to the JAXB 2.0[10]
specification that is being developed in parallel with JAX-WS 2.0.

JAXB 2.0[10] will add support for Java to XML mapping, additional support for less used XML
schema constructs, and provide bidirectional customization of Java⇔ XML data binding. JAX-
WS 2.0 will allow full use of JAXB provided facilities including binding customization and optional
schema validation.

SOAP 1.2 Whilst SOAP 1.1 is still widely deployed, it’s expected thatservices will migrate to SOAP 1.2[3,
4] now that it is a W3C Recommendation. JAX-WS 2.0 will add support for SOAP 1.2 whilst requiring
continued support for SOAP 1.1.

April 19, 2006 JAX-WS 2.0 1

Chapter 1. Introduction

WSDL 2.0 The W3C is expected to progress WSDL 2.0[11] to Recommendation during the lifetime of this
JSR. JAX-WS 2.0 will add support for WSDL 2.0 whilst requiring continued support for WSDL 1.1.

Note: The expert group for the JSR decided against this goal for this release . We will look at adding
support in a future revision of the JAX-WS specification.

WS-I Basic Profile 1.1 JAX-RPC 1.1 added support for WS-I Basic Profile 1.0. WS-I Basic Profile 1.1 is
expected to supersede 1.0 during the lifetime of this JSR andJAX-WS 2.0 will add support for the
additional clarifications it provides.

A Metadata Facility for the Java Programming Language (JSR 175) JAX-WS 2.0 will define the use
of Java annotations[12] to simplify the most common development scenarios for both clients and
servers.

Web Services Metadata for the Java Platform (JSR 181)JAX-WS 2.0 will align with and complement
the annotations defined by JSR 181[13].

Implementing Enterprise Web Services (JSR 109)The JSR 109[14] definedjaxrpc-mapping-info
deployment descriptor provides deployment time Java⇔ WSDL mapping functionality. In conjunc-
tion with JSR 181[13], JAX-WS 2.0 will complement this mapping functionality with development
time Java annotations that control Java⇔ WSDL mapping.

Web Services Security (JSR 183)JAX-WS 2.0 will align with and complement the security APIs defined
by JSR 183[15].

JAX-WS 2.0 will improve support for document/message centric usage:

Asynchrony JAX-WS 2.0 will add support for client side asynchronous operations.

Non-HTTP Transports JAX-WS 2.0 will improve the separation between the XML message format and
the underlying transport mechanism to simplify use of JAX-WS with non-HTTP transports.

Message AccessJAX-WS 2.0 will simplify client and service access to the messages underlying an ex-
change.

Session ManagementJAX-RPC 1.1 session management capabilities are tied to HTTP. JAX-WS 2.0 will
add support for message based session management.

JAX-WS 2.0 will also address issues that have arisen with experience of implementing and using JAX-RPC
1.0:

Inclusion in J2SE JAX-WS 2.0 will prepare JAX-WS for inclusion in a future version of J2SE. Application
portability is a key requirement and JAX-WS 2.0 will define mechanisms to produce fully portable
clients.

Handlers JAX-WS 2.0 will simplify the development of handlers and will provide a mechanism to allow
handlers to collaborate with service clients and service endpoint implementations.

Versioning and Evolution of Web ServicesJAX-WS 2.0 will describe techniques and mechanisms to ease
the burden on developers when creating new versions of existing services.

2 JAX-WS 2.0 April 19, 2006

1.2. Non-Goals

1.2 Non-Goals

The following are non-goals:

Backwards Compatibility of Binary Artifacts Binary compatibility between JAX-RPC 1.x and JAX-WS
2.0 implementation runtimes.

Pluggable data binding JAX-WS 2.0 will defer data binding to JAXB[10]; it is not a goal to provide a
plug-in API to allow other types of data binding technologies to be used in place of JAXB. However,
JAX-WS 2.0 will maintain the capability to selectively disable data binding to provide an XML based
fragment suitable for use as input to alternative data binding technologies.

SOAP Encoding Support Use of the SOAP encoding is essentially deprecated in the webservices com-
munity, e.g., the WS-I Basic Profile[8] excludes SOAP encoding. Instead, literal usage is preferred,
either in the RPC or document style.

SOAP 1.1 encoding is supported in JAX-RPC 1.0 and 1.1 but its support in JAX-WS 2.0 runs counter
to the goal of delegation of data binding to JAXB. Therefore JAX-WS 2.0 will make support for SOAP
1.1 encoding optional and defer description of it to JAX-RPC1.1.

Support for the SOAP 1.2 Encoding[4] is optional in SOAP 1.2 and JAX-WS 2.0 will not add support
for SOAP 1.2 encoding.

Backwards Compatibility of Generated Artifacts JAX-RPC 1.0 and JAXB 1.0 bind XML to Java in dif-
ferent ways. Generating source code that works with unmodified JAX-RPC 1.x client source code is
not a goal.

Support for Java versions prior to J2SE 5.0 JAX-WS 2.0 relies on many of the Java language features
added in J2SE 5.0. It is not a goal to support JAX-WS 2.0 on Javaversions prior to J2SE 5.0.

Service Registration and DiscoveryIt is not a goal of JAX-WS 2.0 to describe registration and discovery
of services via UDDI or ebXML RR. This capability is providedindependently by JAXR[16].

1.3 Requirements

1.3.1 Relationship To JAXB

JAX-WS describes the WSDL⇔ Java mapping, but data binding is delegated to JAXB[10]. Thespecif-
ication must clearly designate where JAXB rules apply to theWSDL⇔ Java mapping without reproducing
those rules and must describe how JAXB capabilities (e.g., the JAXB binding language) are incorporated
into JAX-WS. JAX-WS is required to be able to influence the JAXB binding, e.g., to avoid name collisions
and to be able to control schema validation on serializationand deserialization.

1.3.2 Standardized WSDL Mapping

WSDL is the de-facto service description language for XML Web Services. The specification must specify
a standard WSDL⇔ Java mapping. The following versions of WSDL must be supported:

• WSDL 1.1[5] as clarified by the WS-I Basic Profile[8, 17]

April 19, 2006 JAX-WS 2.0 3

Chapter 1. Introduction

The standardized WSDL mapping will describe the default WSDL ⇔ Java mapping. The default mapping
may be overridden using customizations as described below.

1.3.3 Customizable WSDL Mapping

The specification must provide a standard way to customize the WSDL⇔ Java mapping. The following
customization methods will be specified:

Java Annotations In conjunction with JAXB[10] and JSR 181[13], the specification will define a set of
standard annotations that may be used in Java source files tospecify the mapping from Java artifacts
to their associated WSDL components. The annotations will support mapping to WSDL 1.1.

WSDL Annotations In conjunction with JAXB[10] and JSR 181[13], the specification will define a set of
standard annotations that may be used either within WSDL documents or as in an external form to
specify the mapping from WSDL components to their associated Java artifacts. The annotations will
support mapping from WSDL 1.1.

The specification must describe the precedence rules governing combinations of the customization methods.

1.3.4 Standardized Protocol Bindings

The specification must describe standard bindings to the following protocols:

• SOAP 1.1[2] as clarified by the WS-I Basic Profile[8, 17]

• SOAP 1.2[3, 4]

The specification must not prevent non-standard bindings to other protocols.

1.3.5 Standardized Transport Bindings

The specification must describe standard bindings to the following protocols:

• HTTP/1.1[18].

The specification must not prevent non-standard bindings to other transports.

1.3.6 Standardized Handler Framework

The specification must include a standardized handler framework that describes:

Data binding for handlers The framework will offer data binding facilities to handlers and will support
handlers that are decoupled from the SAAJ API.

Handler Context The framework will describe a mechanism for communicating properties between han-
dlers and the associated service clients and service endpoint implementations.

Unified Response and Fault HandlingThehandleResponse andhandleFault methods will be unif-
ied and the the declarative model for handlers will be improved.

4 JAX-WS 2.0 April 19, 2006

1.4. Use Cases

1.3.7 Versioning and Evolution

The specification must describe techniques and mechanismsto support versioning of service endpoint inter-
faces. The facilities must allow new versions of an interface to be deployed whilst maintaining compatibility
for existing clients.

1.3.8 Standardized Synchronous and Asynchronous Invocati on

There must be a detailed description of the generated methodsignatures to support both asynchronous and
synchronous method invocation in stubs generated by JAX-WS. Both forms of invocation will support a
user configurable timeout period.

1.3.9 Session Management

The specification must describe a standard session management mechanism including:

Session APIsDefinition of a session interface and methods to obtain the session interface and initiate ses-
sions for handlers and service endpoint implementations.

HTTP based sessionsThe session management mechanism must support HTTP cookiesand URL rewrit-
ing.

SOAP based sessionsThe session management mechanism must support SOAP based session information.

1.4 Use Cases

1.4.1 Handler Framework

1.4.1.1 Reliable Messaging Support

A developer wishes to add support for a reliable messaging SOAP feature to an existing service endpoint.
The support takes the form of a JAX-WS handler.

1.4.1.2 Message Logging

A developer wishes to log incoming and outgoing messages forlater analysis, e.g., checking messages using
the WS-I testing tools.

1.4.1.3 WS-I Conformance Checking

A developer wishes to check incoming and outgoing messages for conformance to one or more WS-I profiles
at runtime.

April 19, 2006 JAX-WS 2.0 5

Chapter 1. Introduction

1.5 Conventions

The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD
NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described
in RFC 2119[19].

For convenience, conformance requirements are called out from the main text as follows:

♦ Conformance (Example):Implementations MUST do something.

A list of all such conformance requirements can be found in appendix A.

Java code and XML fragments are formatted as shown in figure 1.1:

Figure 1.1: Example Java Code

1 package com.example.hello;
2
3 public class Hello {
4 public static void main(String args[]) {
5 System.out.println("Hello World");
6 }
7 }

Non-normative notes are formatted as shown below.

Note: This is a note.

This specification uses a number of namespace prefixes throughout; they are listed in Table 1.1. Note that
the choice of any namespace prefix is arbitrary and not semantically significant (see XML Infoset[20]).

Prefix Namespace Notes
env http://www.w3.org/2003/05/soap-envelope A normative XML Schema[21, 22] document for

the http://www.w3.org/2003/05/soap-envelope
namespace can be found at
http://www.w3.org/2003/05/soap-envelope.

xsd http://www.w3.org/2001/XMLSchema The namespace of the XML schema[21, 22]
specification

wsdl http://schemas.xmlsoap.org/wsdl/ The namespace of the WSDL schema[5]
soap http://schemas.xmlsoap.org/wsdl/soap/ The namespace of the WSDL SOAP binding

schema[21, 22]
jaxb http://java.sun.com/xml/ns/jaxb The namespace of the JAXB [9] specification
jaxws http://java.sun.com/xml/ns/jaxws The namespace ofthe JAX-WS specification

Table 1.1: Prefixes and Namespaces used in this specification.

Namespace names of the general form ‘http://example.org/...’ and ‘http://example.com/...’ represent appli-
cation or context-dependent URIs (see RFC 2396[18]).

All parts of this specification are normative, with the exception of examples, notes and sections explicitly
marked as ‘Non-Normative’.

6 JAX-WS 2.0 April 19, 2006

1.6. Expert Group Members

1.6 Expert Group Members

The following people have contributed to this specification:

Chavdar Baikov (SAP AG)
Russell Butek (IBM)
Manoj Cheenath (BEA Systems)
Shih-Chang Chen (Oracle)
Claus Nyhus Christensen (Trifork)
Ugo Corda (SeeBeyond Technology Corp)
Glen Daniels (Sonic Software)
Alan Davies (SeeBeyond Technology Corp)
Thomas Diesler (JBoss, Inc.)
Jim Frost (Art Technology Group Inc)
Alastair Harwood (Cap Gemini)
Marc Hadley (Sun Microsystems, Inc.)
Kevin R. Jones (Developmentor)
Anish Karmarkar (Oracle)
Toshiyuki Kimura (NTT Data Corp)
Jim Knutson (IBM)
Doug Kohlert (Sun Microsystems, Inc)
Daniel Kulp (IONA Technologies PLC)
Sunil Kunisetty (Oracle)
Changshin Lee (Tmax Soft, Inc)
Carlo Marcoli (Cap Gemini)
Srividya Natarajan (Nokia Corporation)
Sanjay Patil (SAP AG)
Greg Pavlik (Oracle)
Bjarne Rasmussen (Novell, Inc)
Sebastien Sahuc (Intalio, Inc.)
Rahul Sharma (Motorola)
Rajiv Shivane (Pramati Technologies)
Richard Sitze (IBM)
Dennis M. Sosnoski (Sosnoski Software)
Christopher St. John (WebMethods Corporation)
Mark Stewart (ATG)
Neal Yin (BEA Systems)
Brian Zotter (BEA Systems)

1.7 Acknowledgements

Robert Bissett, Arun Gupta, Graham Hamilton, Mark Hapner, Jitendra Kotamraju, Vivek Pandey, Santiago
Pericas-Geertsen, Eduardo Pelegri-Llopart, Rama Pulavarthi, Paul Sandoz, Bill Shannon, and Kathy Walsh
(all from Sun Microsystems) have provided invaluable technical input to the JAX-WS 2.0 specification.

April 19, 2006 JAX-WS 2.0 7

Chapter 1. Introduction

8 JAX-WS 2.0 April 19, 2006

Chapter 2

WSDL 1.1 to Java Mapping

This chapter describes the mapping from WSDL 1.1 to Java. This mapping is used when generating web
service interfaces for clients and endpoints from a WSDL 1.1description.

♦ Conformance (WSDL 1.1 support):Implementations MUST support mapping WSDL 1.1 to Java.

The following sections describe the default mapping from each WSDL 1.1 construct to the equivalent Java
construct. In WSDL 1.1, the separation between the abstractport type definition and the binding to a
protocol is not complete. Bindings impact the mapping between WSDL elements used in the abstract port
type definition and Java method parameters. Section 2.6 describes binding dependent mappings.

An application MAY customize the mapping using embedded binding declarations (see section 8.3) or an
external binding file (see section 8.4).

♦ Conformance (Customization required):Implementations MUST support customization of the WSDL
1.1 to Java mapping using the JAX-WS binding language defined in chapter 8.

In order to enable annotations to be used at runtime for method dispatching and marshalling, this specif-
ication requires generated Java classes and interfaces to be annotated with the Web service annotations
described in section 7.11. The annotations present on a generated class MUST faithfully reflect the informa-
tion in the WSDL document(s) that were given as input to the mapping process, as well as the customizations
embedded in them and those specified via any external binding files.

♦ Conformance (Annotations on generated classes):The values of all the properties of all the generated
annotations MUST be consistent with the information in the source WSDL document and the applicable
external binding files.

2.1 Definitions

A WSDL document has a rootwsdl:definitions element. Awsdl:definitions element and its
associatedtargetNamespace attribute is mapped to a Java package. JAXB[10] (see appendix D) defines
a standard mapping from a namespace URI to a Java package name. By default, this algorithm is used to
map the value of awsdl:definitions element’stargetNamespace attribute to a Java package name.

♦ Conformance (Definitions mapping):In the absence of customizations, the Java package name is mapped
from the value of awsdl:definitions element’stargetNamespace attribute using the algorithm def-
ined by JAXB[10].

April 19, 2006 JAX-WS 2.0 9

Chapter 2. WSDL 1.1 to Java Mapping

An application MAY customize this mapping using thejaxws:package binding declaration defined in
section 8.7.1.

No specific authoring style is required for the input WSDL document; implementations should support
WSDL that uses the WSDL and XML Schema import directives.

♦ Conformance (WSDL and XML Schema import directives):Implementations MUST support the WS-I
Basic Profile 1.1[17] defined mechanisms (See R2001, R2002, and R2003) for use of WSDL and XML
Schema import directives.

2.1.1 Extensibility

WSDL 1.1 allows extension elements and attributes to be added to many of its constructs. JAX-WS specifies
the mapping to Java of the extensibility elements and attributes defined for the SOAP and MIME bindings.
JAX-WS does not address mapping of any other extensibility elements or attributes and does not provide
a standard extensibility framework though which such support could be added in a standard way. Future
versions of JAX-WS might add additional support for standard extensions as these become available.

♦ Conformance (Optional WSDL extensions):An implementation MAY support mapping of additional
WSDL extensibility elements and attributes not described in JAX-WS.

Note that such support may limit interoperability and application portability.

2.2 Port Type

A WSDL port type is a named set of abstract operation definitions. Awsdl:portType element is mapped
to a Java interface in the package mapped from thewsdl:definitions element (see section 2.1 for a
description ofwsdl:definitions mapping). A Java interface mapped from awsdl:portType is called
aService Endpoint Interfaceor SEI for short.

♦ Conformance (SEI naming):In the absence of customizations, the name of an SEI MUST be the value of
thename attribute of the correspondingwsdl:portType element mapped according to the rules described
in section 2.8.

An application MAY customize this mapping using thejaxws:class binding declaration defined in section
8.7.2.

♦ Conformance (javax.jws.WebService required): A mapped SEI MUST be annotated with ajavax-
.jws.WebService annotation.

An SEI contains Java methods mapped from thewsdl:operation child elements of the corresponding
wsdl:portType, see section 2.3 for further details onwsdl:operation mapping. WSDL 1.1 does not
support port type inheritance so each generated SEI will contain methods for all operations in the corre-
sponding port type.

2.3 Operation

Eachwsdl:operation in awsdl:portType is mapped to a Java method in the corresponding Java ser-
vice endpoint interface.

10 JAX-WS 2.0 April 19, 2006

2.3. Operation

♦ Conformance (Method naming):In the absence of customizations, the name of a mapped Java method
MUST be the value of thename attribute of thewsdl:operation element mapped according to the rules
described in section 2.8.

An application MAY customize this mapping using thejaxws:method binding declaration defined in
section 8.7.3.

♦ Conformance (javax.jws.WebMethod required): A mapped Java method MUST be annotated with a
javax.jws.WebMethod annotation. The annotation MAY be omitted if all its properties would have the
default values.

The WS-I Basic Profile[17] R2304 requires that operations within a wsdl:portType have unique values
for their name attribute so mapping of WS-I compliant WSDL descriptions will not generate Java inter-
faces with overloaded methods. However, for backwards compatibility, JAX-WS supports operation name
overloading provided the overloading does not cause conflicts (as specified in the Java Language Specif-
ication[23]) in the mapped Java service endpoint interfacedeclaration.

♦ Conformance (Transmission primitive support):An implementation MUST support mapping of opera-
tions that use theone-way andrequest-response transmission primitives.

♦ Conformance (Usingjavax.jws.OneWay): A Java method mapped from a one-way operation MUST
be annotated with ajavax.jws.OneWay annotation.

Mapping ofnotification andsolicit-response operations is out of scope.

2.3.1 Message and Part

Eachwsdl:operation refers to one or morewsdl:message elements via childwsdl:input, wsdl-
:output, andwsdl:fault elements that describe the input, output, and fault messages for the operation
respectively. Each operation can specify one input message, zero or one output message, and zero or more
fault messages.

Fault messages are mapped to application specific exceptions (see section 2.5). The contents of input and
output messages are mapped to Java method parameters using two different styles: non-wrapper style and
wrapper style. The two mapping styles are described in the following subsections. Note that the binding of
a port type can affect the mapping of that port type to Java, see section 2.6 for details.

♦ Conformance (Usingjavax.jws.SOAPBinding): An SEI mapped from a port type that is bound using
the WSDL SOAP binding MUST be annotated with ajavax.jws.SOAPBinding annotation describing
the choice of style, encoding and parameter style. The annotation MAY be omitted if all its properties would
have the default values (i.e. document/literal/wrapped).

♦ Conformance (Usingjavax.jws.WebParam): Generated Java method parameters MUST be annotated
with ajavax.jws.WebParam annotation. If the style is rpc or if the style is Document andthe parameter
style is BARE then thepartName element ofjavax.jws.WebParam MUST refer to thewsdl:part
name of the parameter.

♦ Conformance (Usingjavax.jws.WebResult): Generated Java methods MUST be annotated with a
javax.jws.WebResult annotation. If the style is rpc or if the style is Document andthe parameter style
is BARE then thepartName element ofjavax.jws.WebResultMUST refer to thewsdl:part name of
the parameter. The annotation MAY be omitted if all its properties would have the default values.

April 19, 2006 JAX-WS 2.0 11

Chapter 2. WSDL 1.1 to Java Mapping

2.3.1.1 Non-wrapper Style

A wsdl:message is composed of zero or morewsdl:part elements. Message parts are classified as
follows:

in The message part is present only in the operation’s input message.

out The message part is present only in the operation’s output message.

in/out The message part is present in both the operation’s input message and output message.

Two parts are considered equal if they have the same values for their name attribute and they reference
the same global element or type. Using non-wrapper style, message parts are mapped to Java parameters
according to their classification as follows:

in The message part is mapped to a method parameter.

out The message part is mapped to a method parameter using a holder class (see section 2.3.3) or is mapped
to the method return type.

in/out The message part is mapped to a method parameter using a holder class.

♦ Conformance (Non-wrapped parameter naming):In the absence of any customizations, the name of a
mapped Java method parameter MUST be the value of thename attribute of thewsdl:part element mapped
according to the rules described in sections 2.8 and 2.8.1.

An application MAY customize this mapping using thejaxws:parameter binding declaration defined in
section 8.7.3.

Section 2.3.2 defines rules that govern the ordering of parameters in mapped Java methods and identification
of the part that is mapped to the method return type.

2.3.1.2 Wrapper Style

A WSDL operation qualifies for wrapper style mapping only ifthe following criteria are met:

(i) The operation’s input and output messages (if present) each contain only a single part

(ii) The input message part refers to a global element declaration whose localname is equal to the opera-
tion name

(iii) The output message part refers to a global element declaration

(iv) The elements referred to by the input and output messageparts (henceforth referred to aswrapper
elements) are both complex types defined using thexsd:sequence compositor

(v) The wrapper elements only contain child elements, they must not contain other structures such as
wildcards (element or attribute),xsd:choice, substitution groups (element references are not per-
mitted) or attributes; furthermore, they must not be nillable.

♦ Conformance (Default mapping mode):Operations that do not meet the criteria above MUST be mapped
using non-wrapper style.

12 JAX-WS 2.0 April 19, 2006

2.3. Operation

In some cases use of the wrapper style mapping can lead to undesirable Java method signatures and use of
non-wrapper style mapping would be preferred.

♦ Conformance (Disabling wrapper style):An implementation MUST support use of thejaxws:enable-
WrapperStyle binding declaration to enable or disable the wrapper style mapping of operations (see sec-
tion 8.7.3).

Using wrapper style, the child elements of the wrapper element (henceforth calledwrapper children) are
mapped to Java parameters, wrapper children are classifiedas follows:

in The wrapper child is only present in the input message part’swrapper element.

out The wrapper child is only present in the output message part’s wrapper element.

in/out The wrapper child is present in both the input and output message part’s wrapper element.

Two wrapper children are considered equal if they have the same local name, the same XML schema type
and the same Java type after mapping (see section 2.4 for XML Schema to Java type mapping rules). The
mapping depends on the classification of the wrapper child as follows:

in The wrapper child is mapped to a method parameter.

out The wrapper child is mapped to a method parameter using a holder class (see section 2.3.3) or is
mapped to the method return value.

in/out The wrapper child is mapped to a method parameter using a holder class.

♦ Conformance (Wrapped parameter naming):In the absence of customization, the name of a mapped Java
method parameter MUST be the value of the local name of the wrapper child mapped according to the rules
described in sections 2.8 and 2.8.1.

An application MAY customize this mapping using thejaxws:parameter binding declaration defined in
section 8.7.3.

♦ Conformance (Parameter name clash):If the mapping results in two Java parameters with the same name
and one of those parameters is not mapped to the method returntype, see section 2.3.2, then this is reported as
an error and requires developer intervention to correct, either by disabling wrapper style mapping, modifying
the source WSDL or by specifying a customized parameter namemapping.

♦ Conformance (Usingjavax.xml.ws.RequestWrapper): If wrapper style is used, generated Java meth-
ods MUST be annotated with ajavax.xml.ws.RequestWrapper annotation. The annotation MAY be
omitted if all its properties would have the default values.

♦ Conformance (Usingjavax.xml.ws.ResponseWrapper): If wrapper style is used, generated Java
methods MUST be annotated with ajavax.xml.ws.ResponseWrapper annotation. The annotation
MAY be omitted if all its properties would have the default values.

2.3.1.3 Example

Figure 2.1 shows a WSDL extract and the Java method that results from using wrapper and non-wrapper
mapping styles. For readability, annotations are omitted.

April 19, 2006 JAX-WS 2.0 13

Chapter 2. WSDL 1.1 to Java Mapping

1 <!-- WSDL extract -->
2 <types>
3 <xsd:element name="setLastTradePrice">
4 <xsd:complexType>
5 <xsd:sequence>
6 <xsd:element name="tickerSymbol" type="xsd:string"/>
7 <xsd:element name="lastTradePrice" type="xsd:float"/>
8 </xsd:sequence>
9 </xsd:complexType>

10 </xsd:element>
11
12 <xsd:element name="setLastTradePriceResponse">
13 <xsd:complexType>
14 <xsd:sequence/>
15 </xsd:complexType>
16 </xsd:element>
17 </types>
18
19 <message name="setLastTradePrice">
20 <part name="setLastTradePrice"
21 element="tns:setLastTradePrice"/>
22 </message>
23
24
25 <message name="setLastTradePriceResponse">
26 <part name="setLastTradePriceResponse"
27 element="tns:setLastTradePriceResponse"/>
28 </message>
29
30
31 <portType name="StockQuoteUpdater">
32 <operation name="setLastTradePrice">
33 <input message="tns:setLastTradePrice"/>
34 <output message="tns:setLastTradePriceResponse"/>
35 </operation>
36 </portType>
37
38 // non-wrapper style mapping
39 SetLastTradePriceResponse setLastTradePrice(
40 SetLastTradePrice setLastTradePrice);
41
42 // wrapper style mapping
43 void setLastTradePrice(String tickerSymbol, float lastTradePrice);

Figure 2.1: Wrapper and non-wrapper mapping styles

14 JAX-WS 2.0 April 19, 2006

2.3. Operation

2.3.2 Parameter Order and Return Type

A wsdl:operation element may have aparameterOrder attribute that defines the ordering of parame-
ters in a mapped Java method as follows:

• Message parts are either listed or unlisted. If the value ofa wsdl:part element’sname attribute is
present in theparameterOrder attribute then the part is listed, otherwise it is unlisted.

Note: R2305 in WS-I Basic Profile 1.1 [17] requires that if the parameterOrder attribute is present
then at most one part may be unlisted. However, the algorithmoutlined in this section supports
WSDLs that do not conform with this requirement.

• Parameters that are mapped from message parts are either listed or unlisted. Parameters that are
mapped from listed parts are listed; parameters that are mapped from unlisted parts are unlisted.

• Parameters that are mapped from wrapper children (wrapperstyle mapping only) are unlisted.

• Listed parameters appear first in the method signature in the order in which their corresponding parts
are listed in theparameterOrder attribute.

• Unlisted parameters either form the return type or follow the listed parameters

• The return type is determined as follows:

Non-wrapper style mapping Only parameters that are mapped from parts in the abstract output mes-
sage may form the return type, parts from other messages (seee.g. section 2.6.2.1) do not qual-
ify. If there is a single unlistedout part in the abstract output message then it forms the method
return type, otherwise the return type isvoid.

Wrapper style mapping If there is a singleout wrapper child then it forms the method return type,
if there is anout wrapper child with a local name of “return” then it forms the method return
type, otherwise the return type isvoid.

• Unlisted parameters that do not form the return type followthe listed parameters in the following
order:

1. Parameters mapped fromin andin/out parts appear in the same order the corresponding parts
appear in the input message.

2. Parameters mapped fromin andin/outwrapper children (wrapper style mapping only) appear
in the same order as the corresponding elements appear in thewrapper.

3. Parameters mapped fromout parts appear in the same order the corresponding parts appear in
the output message.

4. Parameters mapped fromoutwrapper children (wrapper style mapping only) appear in thesame
order as the corresponding wrapper children appear in the wrapper.

2.3.3 Holder Class

Holder classes are used to supportout andin/out parameters in mapped method signatures. They provide
a mutable wrapper for otherwise immutable object references. JAX-WS defines a generic holder class
(javax.xml.ws.Holder<T>) that can be used for any Java class.

April 19, 2006 JAX-WS 2.0 15

Chapter 2. WSDL 1.1 to Java Mapping

Parameters whose XML data type would normally be mapped to a Java primitive type (e.g.,xsd:int to
int) are instead mapped to aHolder whose type parameter is bound to the Java wrapper class correspond-
ing to the primitive type. E.g., anout or in/out parameter whose XML data type would normally be
mapped to a Javaint is instead mapped toHolder<java.lang.Integer>.

♦ Conformance (Use ofHolder): Implementations MUST mapout andin/out method parameters us-
ing javax.xml.ws.Holder<T>, with the exception of aout part that has been mapped to the method’s
return type.

2.3.4 Asynchrony

In addition to the synchronous mapping ofwsdl:operation described above, a client side asynchronous
mapping is also supported. It is expected that the asynchronous mapping will be useful in some but not
all cases and therefore generation of the client side asynchronous methods should be optional at the users
discretion.

♦ Conformance (Asynchronous mapping required):An implementation MUST support the asynchronous
mapping.

♦ Conformance (Asynchronous mapping option):An implementation MUST support use of thejaxws-
:enableAsyncMappingbinding declaration defined in section 8.7.3 to enable and disable the asynchronous
mapping.

Editors Note 2.1 JSR-181 currently does not define annotations that can be used to mark a method as being
asynchronous.

2.3.4.1 Standard Asynchronous Interfaces

The following standard interfaces are used in the asynchronous operation mapping:

javax.xml.ws.Response A generic interface that is used to group the results of a method invocation
with the response context.Response extendsFuture<T> to provide asynchronous result polling
capabilities.

javax.xml.ws.AsyncHandler A generic interface that clients implement to receive results in an asyn-
chronous callback.

2.3.4.2 Operation

Eachwsdl:operation is mapped to two additional methods in the corresponding service endpoint inter-
face:

Polling method A polling method returns a typedResponse<ResponseBean> that may be polled using
methods inherited fromFuture<T> to determine when the operation has completed and to retrieve
the results. See below for further details onResponseBean.

Callback method A callback method takes an additional final parameter that is an instance of a typed
AsyncHandler<ResponseBean> and returns a wildcardFuture<?> that may be polled to determine
when the operation has completed. The object returned fromFuture<?>.get() has no standard
type. Client code should not attempt to cast the object to anyparticular type as this will result in
non-portable behavior.

16 JAX-WS 2.0 April 19, 2006

2.3. Operation

♦ Conformance (Asynchronous method naming):In the absence of customizations, the name of the polling
and callback methods MUST be the value of thename attribute of thewsdl:operation suffixed with
“Async” mapped according to the rules described in sections2.8 and 2.8.1.

♦ Conformance (Asynchronous parameter naming):The name of the method parameter for the callback
handler MUST be “asyncHandler”. Parameter name collisionsrequire user intervention to correct, see
section 2.8.1.

An application MAY customize this mapping using thejaxws:method binding declaration defined in
section 8.7.3.

♦ Conformance (Failed method invocation):If there is any error prior to invocation of the operation, an
implementation MUST throw aWebServiceException1.

2.3.4.3 Message and Part

The asynchronous mapping supports both wrapper and non-wrapper mapping styles, but differs in how it
mapsout andin/out parts or wrapper children:

in The part or wrapper child is mapped to a method parameter as described in section 2.3.1.

out The part or wrapper child is mapped to a property of the response bean (see below).

in/out The part or wrapper child is mapped to a method parameter (no holder class) and to a property of the
response bean.

2.3.4.4 Response Bean

A response bean is a mapping of an operation’s output message, it contains properties for eachout and
in/out message part or wrapper child.

♦ Conformance (Response bean naming):In the absence of customizations, the name of a response bean
MUST be the value of thename attribute of thewsdl:operation suffixed with “Response” mapped ac-
cording to the rules described in sections 2.8 and 2.8.1.

A response bean is mapped from a global element declaration following the rules described in section 2.4.
The global element declaration is formed as follows (in order of preference):

• If the operation’s output message contains a single part and that part refers to a global element decla-
ration then use the referenced global element.

• Synthesize a global element declaration of a complex type defined using thexsd:sequence com-
positor. Each output message part is mapped to a child of the synthesized element as follows:

– Each global element referred to by an output part is added as achild of the sequence.

– Each part that refers to a type is added as a child of the sequence by creating an element in no
namespace whose localname is the value of thename attribute of thewsdl:part element and
whose type is the value of thetype attribute of thewsdl:part element

1Errors that occur during the invocation are reported when the client attempts to retrieve the results of the operation, see section
2.3.4.5.

April 19, 2006 JAX-WS 2.0 17

Chapter 2. WSDL 1.1 to Java Mapping

If the resulting response bean has only a single property then the bean wrapper should be discarded in method
signatures. In this case, if the property is a Java primitivetype then it is boxed using the Java wrapper type
(e.g.int to Integer) to enable its use withResponse.

2.3.4.5 Faults

Mapping of WSDL faults to service specific exceptions is identical for both asynchronous and synchronous
cases, section 2.5 describes the mapping. However, mapped asynchronous methods do not throw service
specific exceptions directly. Instead ajava.util.concurrent.ExecutionException is thrown when
a client attempts to retrieve the results of an asynchronousmethod invocation via theResponse.get
method.

♦ Conformance (Asynchronous fault reporting):A WSDL fault that occurs during execution of an asyn-
chronous method invocation MUST be mapped to ajava.util.concurrent.ExecutionException

thrown when the client callsResponse.get.

Response is a static generic interface whoseget method cannot throw service specific exceptions. Instead
of throwing a service specific exception, aResponse instance throws anExecutionException whose
cause is set to an instance of the service specific exceptionmapped from the corresponding WSDL fault.

♦ Conformance (Asychronous fault cause):An ExecutionException that is thrown by theget method
of Response as a result of a WSDL fault MUST have as its cause the service specific exception mapped
from the WSDL fault, if there is one, otherwise theProtocolException mapped from the WSDL fault
(see 6.4).

2.3.4.6 Mapping Examples

Figure 2.2 shows an example of the asynchronous operation mapping. Note that the mapping usesFloat
instead of a response bean wrapper (GetPriceResponse) since the synthesized global element declaration
for the operations output message (lines 17–24) maps to a response bean that contains only a single property.

2.3.4.7 Usage Examples

• Synchronous use.

1 Service service = ...;
2 StockQuote quoteService = (StockQuote)service.getPort(portName);
3 Float quote = quoteService.getPrice(ticker);

• Asynchronous polling use.

1 Service service = ...;
2 StockQuote quoteService = (StockQuote)service.getPort(portName);
3 Response<Float> response = quoteService.getPriceAsync(ticker);
4 while (!response.isDone()) {
5 // do something while we wait
6 }
7 Float quote = response.get();

18 JAX-WS 2.0 April 19, 2006

2.3. Operation

1 <!-- WSDL extract -->
2 <message name="getPrice">
3 <part name="ticker" type="xsd:string"/>
4 </message>
5
6
7 <message name="getPriceResponse">
8 <part name="price" type="xsd:float"/>
9 </message>

10
11
12 <portType name="StockQuote">
13 <operation name="getPrice">
14 <input message="tns:getPrice"/>
15 <output message="tns:getPriceResponse"/>
16 </operation>
17 </portType>
18
19 <!-- Synthesized response bean element -->
20 <xsd:element name="getPriceResponse">
21 <xsd:complexType>
22 <xsd:sequence>
23 <xsd:element name="price" type="xsd:float"/>
24 </xsd:sequence>
25 </xsd:complexType>
26 </xsd:element>
27
28 // synchronous mapping
29 @WebService
30 public interface StockQuote {
31 float getPrice(String ticker);
32 }
33
34 // asynchronous mapping
35 @WebService
36 public interface StockQuote {
37 float getPrice(String ticker);
38 Response<Float> getPriceAsync(String ticker);
39 Future<?> getPriceAsync(String ticker, AsyncHandler<Float>);
40 }

Figure 2.2: Asynchronous operation mapping

April 19, 2006 JAX-WS 2.0 19

Chapter 2. WSDL 1.1 to Java Mapping

• Asynchronous callback use.

1 class MyPriceHandler implements AsyncHandler<Float> {
2 ...
3 public void handleResponse(Response<Float> response) {
4 Float price = response.get();
5 // do something with the result
6 }
7 }
8
9 Service service = ...;

10 StockQuote quoteService = (StockQuote)service.getPort(portName);
11 MyPriceHandler myPriceHandler = new MyPriceHandler();
12 quoteService.getPriceAsync(ticker, myPriceHandler);

2.4 Types

Mapping of XML Schema types to Java is described by the JAXB 2.0 specification[10]. The contents of a
wsdl:types section is passed to JAXB along with any additional type or element declarations (e.g., see
section 2.3.4) required to map other WSDL constructs to Java. E.g., section 2.3.4 defines an algorithm
for synthesizing additional global element declarations to provide a mapping from WSDL operations to
asynchronous Java method signatures.

JAXB supports mapping XML types to either Java interfaces orclasses. By default JAX-WS uses the class
based mapping of JAXB but also allows use of the interface based mapping.

♦ Conformance (JAXB class mapping):In the absence of user customizations, an implementation MUST
use the JAXB class based mapping withgenerateValueClass set totrue andgenerateElement-
Class set tofalse when mapping WSDL types to Java.

♦ Conformance (JAXB customization use):An implementation MUST support use of JAXB customiza-
tions during mapping as detailed in section 8.5.

♦ Conformance (JAXB customization clash):To avoid clashes, if a user customizes the mapping, an im-
plementation MUST NOT add the default class based mapping customizations.

In addition, for ease of use, JAX-WS strips anyJAXBElement<T> wrapper off the type of a method pa-
rameter if the normal JAXB mapping would result in one2. E.g. a parameter that JAXB would map to
JAXBElement<Integer> is instead be mapped toInteger.

JAXB provides support for the SOAP MTOM[24]/XOP[25] mechanism for optimizing transmission of bi-
nary data types. JAX-WS provides the MIME processing required to enable JAXB to serialize and de-
serialize MIME based MTOM/XOP packages. The contract between JAXB and an MTOM/XOP pack-
age processor is defined by thejavax.xml.bind.AttachmentMarshaller andjavax.xml.bind-
.AttachmentUnmarshaller classes. A JAX-WS implementation can plug into it by registering its
ownAttachmentMarshaller andAttachmentUnmarshaller at runtime using thesetAttachment-
Unmarshaller method ofjavax.xml.bind.Unmarshaller (resp. thesetAttachmentMarshaller
method ofjavax.xml.bind.Marshaller).

2JAXB maps an element declaration to a Java instance that implements JAXBElement.

20 JAX-WS 2.0 April 19, 2006

2.5. Fault

2.5 Fault

A wsdl:fault element is mapped to a Java exception.

♦ Conformance (javax.xml.ws.WebFault required): A mapped exception MUST be annotated with a
javax.xml.ws.WebFault annotation.

♦ Conformance (Exception naming):In the absence of customizations, the name of a mapped exception
MUST be the value of thename attribute of thewsdl:message referred to by thewsdl:fault element
mapped according to the rules in sections 2.8 and 2.8.1.

An application MAY customize this mapping using thejaxws:class binding declaration defined in section
8.7.4.

Multiple operations within the same service can define equivalent faults. Faults defined within the same
service are equivalent if the values of theirmessage attributes are equal.

♦ Conformance (Fault equivalence):An implementation MUST map equivalent faults within a service to a
single Java exception class.

A wsdl:fault element refers to awsdl:message that contains a single part. The global element decla-
ration3 referred to by that part is mapped to a Java bean, henceforth called afault bean, using the mapping
described in section 2.4. An implementation generates a wrapper exception class that extendsjava.lang-

.Exception and contains the following methods:

WrapperException(String message, FaultBean faultInfo) A constructor whereWrapperExcep-
tion is replaced with the name of the generated wrapper exceptionandFaultBeanis replaced by the
name of the generated fault bean.

WrapperException(String message, FaultBean faultInfo, Throwable cause) A constructor
whereWrapperExceptionis replaced with the name of the generated wrapper exceptionandFaultBean
is replaced by the name of the generated fault bean. The last argument,cause, may be used to convey
protocol specific fault information, see section 6.4.1.

FaultBean getFaultInfo() Getter to obtain the fault information, whereFaultBeanis replaced by the
name of the generated fault bean.

The WrapperExceptionclass is annotated using theWebFault annotation (see section 7.2) to capture the
local and namespace name of the global element mapped to the fault bean.

Two wsdl:fault child elements of the samewsdl:operation that indirectly refer to the same global
element declaration are considered to be equivalent since there is no interoperable way of differentiating
between their serialized forms.

♦ Conformance (Fault equivalence):At runtime an implementation MAY map a serialized fault intoany
equivalent Java exception.

2.5.1 Example

Figure 2.3 shows an example of the WSDL fault mapping described above.

3WS-I Basic Profile[17] R2205 requires parts to refer to elements rather than types.

April 19, 2006 JAX-WS 2.0 21

Chapter 2. WSDL 1.1 to Java Mapping

1 <!-- WSDL extract -->
2 <types>
3 <xsd:schema targetNamespace="...">
4 <xsd:element name="faultDetail">
5 <xsd:complexType>
6 <xsd:sequence>
7 <xsd:element name="majorCode" type="xsd:int"/>
8 <xsd:element name="minorCode" type="xsd:int"/>
9 </xsd:sequence>

10 </xsd:complexType>
11 </xsd:element>
12 </xsd:schema>
13 </types>
14
15 <message name="operationException">
16 <part name="faultDetail" element="tns:faultDetail"/>
17 </message>
18
19
20 <portType name="StockQuoteUpdater">
21 <operation name="setLastTradePrice">
22 <input .../>
23 <output .../>
24 <fault name="operationException"
25 message="tns:operationException"/>
26 </operation>
27 </portType>
28
29 // fault mapping
30 @WebFault(name="faultDetail", targetNamespace="...")
31 class OperationException extends Exception {
32 OperationException(String message, FaultDetail faultInfo) {...}
33 OperationException(String message, FaultDetail faultInfo,
34 Throwable cause) {...}
35 FaultDetail getFaultInfo() {...}
36 }

Figure 2.3: Fault mapping

22 JAX-WS 2.0 April 19, 2006

2.6. Binding

2.6 Binding

The mapping from WSDL 1.1 to Java is based on the abstract description of a wsdl:portType and its
associated operations. However, the binding of a port type to a protocol can introduce changes in the
mapping – this section describes those changes in the general case and specifically for the mandatory WSDL
1.1 protocol bindings.

♦ Conformance (Required WSDL extensions):An implementation MUST support mapping of the WSDL
1.1 specified extension elements for the WSDL SOAP and MIME bindings.

2.6.1 General Considerations

R2209 in WS-I Simple SOAP Binding Profile 1.1[26] recommends that all parts of a message be bound but
does not require it.

♦ Conformance (Unbound message parts):To preserve the protocol independence of mapped operations,
an implementation MUST NOT ignore unbound message parts when mapping from WSDL 1.1 to Java.
Instead an implementation MUST generate binding code that ignoresin andin/out parameters mapped
from unbound parts and that presentsout parameters mapped from unbound parts asnull.

2.6.2 SOAP Binding

This section describes changes to the WSDL 1.1 to Java mapping that may result from use of certain SOAP
binding extensions.

2.6.2.1 Header Binding Extension

A soap:header element may be used to bind a part from a message to a SOAP header. As clarified by
R2208 in WS-I Basic Profile 1.1[17], the part may belong to either the message bound by thesoap:body
or to a different message:

• If the part belongs to the message bound by thesoap:body then it is mapped to a method parameter
as described in section 2.3. Such a part is always mapped using the non-wrapper style.

• If the part belongs to a different message than that bound bythesoap:body then it may optionally
be mapped to an additional method parameter. When mapped to aparameter, the part is treated as an
additional unlisted part for the purposes of the mapping described in section 2.3. This additional part
does not affect eligibility for wrapper style mapping of themessage bound by thesoap:body (see
section 2.3.1); the additional part is always mapped using the non-wrapper style.

Note that the order of headers in a SOAP message is independent of the order ofsoap:header elements
in the WSDL binding – see R2751 in WS-I Basic Profile 1.0[8]. This causes problems when two or more
headers with the same qualified name are present in a messageand one or more of those headers are bound
to a method parameter since it is not possible to determine which header maps to which parameter.

♦ Conformance (Duplicate headers in binding):When mapping, an implemention MUST report an error
if the binding of an operation includes two or moresoap:header elements that would result in SOAP
headers with the same qualified name.

April 19, 2006 JAX-WS 2.0 23

Chapter 2. WSDL 1.1 to Java Mapping

♦ Conformance (Duplicate headers in message):An implementation MUST generate a runtime error if,
during unmarshalling, there is more than one instance of a header whose qualified name is mapped to a
method parameter.

2.6.3 MIME Binding

The presence of amime:multipartRelated binding extension element as a child of awsdl:input or
wsdl:output element in awsdl:binding indicates that the corresponding messages may be serialized as
MIME packages. The WS-I Attachments Profile[27] describestwo separate attachment mechanisms, both
based on use of the WSDL 1.1 MIME binding[5]:

wsiap:swaRef A schema type that may be used in the abstract message description to indicate a reference
to an attachment.

mime:content A binding construct that may be used to bind a message part to an attachment.

JAXB[10] describes the mapping from the WS-I definedwsiap:swaref schema type to Java and, since
JAX-WS inherits this capability, it is not discussed further here. Use of themime:content construct is
outside the scope of JAXB mapping and the following subsection describes changes to the WSDL 1.1 to
Java mapping that results from its use.

2.6.3.1 mime:content

Message parts are mapped to method parameters as described in section 2.3 regardless of whether the part
is bound to the SOAP message or to an attachment. JAXB rules are used to determine the Java type of
message parts based on the XML schema type referenced by thewsdl:part. However, when a message
part is bound to a MIME part (using themime:content element of the WSDL MIME binding) additional
information is available that provides the MIME type of the data and this can optionally be used to narrow
the default JAXB mapping.

♦ Conformance (Use of MIME type information):An implementation MUST support using thejaxws-
:enableMIMEContent binding declaration defined in section 8.7.5 to enable or disable the use of the
additional metadata inmime:content elements when mapping from WSDL to Java.

JAXB defines a mapping between MIME types and Java types. When a part is bound using one or more
mime:content elements4 and use of the additional metadata is enabled then the JAXB mapping is cus-
tomized to use the most specific type allowed by the set of MIME types described for the part in the bind-
ing. The case where the parameter mode isINOUT and is bound to different mime bindings in the input and
output messages using themime:content element MUST also be treated in the same way as described
above. Please refer to appendix H in the JAXB 2.0 specification [10] for details of the type mapping.

The part belongs to the message bound by thesoap:body then it is mapped to a method parameter as
described in section 2.3. Such a part is always mapped using the non-wrapper style.

Parts bound to MIME using themime:content WSDL extension are mapped as described in section 2.3.
These parts are mapped using the non-wrapper style.

Figure 2.4 shows an example WSDL and two mapped interfaces: one without using themime:content
metadata, the other using the additional metadata to narrowthe binding. Note that in the latter the type of
theclaimPhoto method parameter isImage rather than the defaultbyte[].

4Multiple mime:content elements for the same part indicate a set of permissible alternate types.

24 JAX-WS 2.0 April 19, 2006

2.6. Binding

1 <!-- WSDL extract -->
2 <wsdl:message name="ClaimIn">
3 <wsdl:part name="body" element="types:ClaimDetail"/>
4 <wsdl:part name="ClaimPhoto" type="xsd:base64Binary"/>
5 </wsdl:message>
6
7 <wsdl:portType name="ClaimPortType">
8 <wsdl:operation name="SendClaim">
9 <wsdl:input message="tns:ClaimIn"/>

10 </wsdl:operation>
11 </wsdl:portType>
12
13 <wsdl:binding name="ClaimBinding" type="tns:ClaimPortType">
14 <soapbind:binding style="document" transport="..."/>
15 <wsdl:operation name="SendClaim">
16 <soapbind:operation soapAction="..."/>
17 <wsdl:input>
18 <mime:multipartRelated>
19 <mime:part>
20 <soapbind:body parts="body" use="literal"/>
21 </mime:part>
22 <mime:part>
23 <mime:content part="ClaimPhoto" type="image/jpeg"/>
24 <mime:content part="ClaimPhoto" type="image/gif"/>
25 </mime:part>
26 </mime:multipartRelated>
27 </wsdl:input>
28 </wsdl:operation>
29 </wsdl:binding>
30
31 // Mapped Java interface without mime:content metadata
32 @WebService
33 public interface ClaimPortType {
34 public String sendClaim(ClaimDetail detail, byte claimPhoto[]);
35 }
36
37 // Mapped Java interface using mime:content metadata
38 @WebService
39 public interface ClaimPortType {
40 public String sendClaim(ClaimDetail detail, Image claimPhoto);
41 }

Figure 2.4: Use ofmime:content metadata

April 19, 2006 JAX-WS 2.0 25

Chapter 2. WSDL 1.1 to Java Mapping

♦ Conformance (MIME type mismatch):On receipt of a message where the MIME type of a part does not
match that described in the WSDL an implementation SHOULD throw aWebServiceException.

♦ Conformance (MIME part identification):An implementation MUST use the algorithm defined in the
WS-I Attachments Profile[27] when generating the MIMEContent-ID header field value for a part bound
usingmime:content.

2.7 Service and Port

A wsdl:service is a collection of relatedwsdl:port elements. Awsdl:port element describes a port
type bound to a particular protocol (awsdl:binding) that is available at particular endpoint address. On
the client side, awsdl:service element is mapped to a generated service class that extendsjavax.xml-

.ws.Service (see section 4.1 for more information on theService class).

♦ Conformance (Service superclass required):A generated service class MUST extend thejavax.xml-

.ws.Service class.

♦ Conformance (Service class naming):In the absence of customization, the name of a generated service
class MUST be the value of thename attribute of thewsdl:service element mapped according to the
rules described in sections 2.8 and 2.8.1.

An application MAY customize the name of the generated service class using thejaxws:class binding
declaration defined in section 8.7.7.

In order to allow an implementation to identify the Web service that a generated service class corre-
sponds to, the latter is required to be annotated withjavax.xml.ws.WebServiceClient annotation.
The annotation contains all the information necessary to locate a WSDL document and uniquely identify a
wsdl:service inside it.

♦ Conformance (javax.xml.ws.WebServiceClient required): A generated service class MUST be
annotated with ajavax.xml.ws.WebServiceClient annotation.

JAX-WS 2.0 mandates that two constructors be present on every generated service class.

♦ Conformance:A generated service class MUST have a default (i.e. zero-argument) public construc-
tor. This constructor MUST call the protected constructor declared injavax.xml.ws.Service, passing
as arguments the WSDL location and the service name. The values of the actual arguments for this call
MUST be equal (in thejava.lang.Object.equals sense) to the values specified in the mandatory
WebServiceClient annotation on the generated service class itself.

♦ Conformance:The implementation class MUST have a public constructor that takes two arguments,
the wsdl location (ajava.net.URL) and the service name (ajavax.xml.namespace.QName). This
constructor MUST call the protected constructor injavax.xml.ws.Service passing as arguments the
WSDL location and the service name values with which it was invoked.

For each port in the service, the generated client side service class contains the following methods, one for
each port defined by the WSDL service and whose binding is supported by the JAX-WS implementation:

getPortName() One required method that takes no parameters and returns a proxy that implements the
mapped service endpoint interface. The method generated delegates to theService.getPort(...)
method passing it the port name. The value of the port name MUST be equal to the value specified in
the mandatoryWebEndpoint annotation on the method itself.

26 JAX-WS 2.0 April 19, 2006

2.7. Service and Port

♦ Conformance (Failed getPort Method):A generatedgetPortNamemethod MUST throwjavax.xml-
.ws.WebServiceException on failure.

The value ofPortNamein the above is derived as follows: the value of thename attribute of thewsdl:port
element is first mapped to a Java identifier according to therules described in section 2.8, this Java identifier
is then treated as a JavaBean property for the purposes of deriving thegetPortNamemethod name.

An application MAY customize the name of the generated method for a port using thejaxws:method
binding declaration defined in section 8.7.8.

In order to enable an implementation to determine thewsdl:port that a port getter method corresponds to,
the latter is required to be annotated with ajavax.xml.ws.WebEndpoint annotation.

♦ Conformance (javax.xml.ws.WebEndpoint required): ThegetPortNamemethods of generated ser-
vice interface MUST be annotated with ajavax.xml.ws.WebEndpoint annotation.

2.7.1 Example

The following shows a WSDL extract and the resulting generated service class.

1 <!-- WSDL extract -->
2 <wsdl:service name="StockQuoteService">
3 <wsdl:port name="StockQuoteHTTPPort" binding="StockQuoteHTTPBinding"/>
4 <wsdl:port name="StockQuoteSMTPPort" binding="StockQuoteSMTPBinding"/>
5 </wsdl:service>
6
7 // Generated Service Class
8 @WebServiceClient(name="StockQuoteService",
9 targetNamespace="http://example.com/stocks",

10 wsdlLocation="http://example.com/stocks.wsdl")
11 public class StockQuoteService extends javax.xml.ws.Service {
12
13 public StockQuoteService() {
14 super(new URL("http://example.com/stocks.wsdl"),
15 new QName("http://example.com/stocks",
16 "StockQuoteService"));
17 }
18
19 public StockQuoteService(URL wsdlLocation, QName serviceName) {
20 super(wsdlLocation, serviceName);
21 }
22
23 @WebEndpoint(name="StockQuoteHTTPPort")
24 public StockQuoteProvider getStockQuoteHTTPPort() {
25 return (StockQuoteProvider)super.getPort("StockQuoteHTTPPort",
26 StockQuoteProvider.class);
27 }
28
29 @WebEndpoint(name="StockQuoteSMTPPort")
30 public StockQuoteProvider getStockQuoteSMTPPort() {
31 return (StockQuoteProvider)super.getPort("StockQuoteSMTPPort",
32 StockQuoteProvider.class);
33 }
34 }

April 19, 2006 JAX-WS 2.0 27

Chapter 2. WSDL 1.1 to Java Mapping

In the above,StockQuoteProvider is the service endpoint interface mapped from the WSDL port type
for both referenced bindings.

2.8 XML Names

Appendix C of JAXB 1.0[9] defines a mapping from XML names to Java identifiers. JAX-WS uses this
mapping to convert WSDL identifiers to Java identifiers with the following modifications and additions:

Method identifiers When mappingwsdl:operation names to Java method identifiers, theget or set
prefix is not added. Instead the first word in the word-list has its first character converted to lower
case.

Parameter identifiers When mappingwsdl:part names or wrapper child local names to Java method
parameter identifiers, the first word in the word-list has its first character converted to lower case.
Clashes with Java language reserved words are reported as errors and require use of appropriate cus-
tomizations to fix the clash.

2.8.1 Name Collisions

WSDL name scoping rules may result in name collisions when mapping from WSDL 1.1 to Java. E.g., a
port type and a service are both mapped to Java classes but WSDL allows both to be given the same name.
This section defines rules for resolving such name collisions.

The order of precedence for name collision resolution is as follows (highest to lowest);

1. Service endpoint interface

2. Non-exception Java class

3. Exception class

4. Service class

If a name collision occurs between two identifiers with different precedences, the lower precedence item
has its name changed as follows:

Non-exception Java classThe suffix “ Type” is added to the class name.

Exception classThe suffix “ Exception” is added to the class name.

Service classThe suffix “ Service” is added to the class name.

If a name collision occurs between two identifiers with the same precedence, this is reported as an error
and requires developer intervention to correct. The error may be corrected either by modifying the source
WSDL or by specifying a customized name mapping.

If a name collision occurs between a mapped Java method and a method injavax.xml.ws.Binding-
Provider (an interface that proxies are required to implement, see section 4.2), the prefix “” is added to
the mapped method.

28 JAX-WS 2.0 April 19, 2006

Chapter 3

Java to WSDL 1.1 Mapping

This chapter describes the mapping from Java to WSDL 1.1. This mapping is used when generating web
service endpoints from existing Java interfaces.

♦ Conformance (WSDL 1.1 support):Implementations MUST support mapping Java to WSDL 1.1.

The following sections describe the default mapping from each Java construct to the equivalent WSDL 1.1
artifact.

An application MAY customize the mapping using the annotations defined in section 7.

♦ Conformance (Standard annotations):An implementation MUST support the use of annotations defined
in section 7 to customize the Java to WSDL 1.1 mapping.

3.1 Java Names

♦ Conformance (Java identifier mapping):In the absence of annotations described in this specification,
Java identifiers MUST be mapped to XML names using the algorithm defined in appendix B of SOAP
1.2 Part 2[4].

3.1.1 Name Collisions

WS-I Basic Profile 1.0[8] (see R2304) requires operations within awsdl:portType to be uniquely named
– support for customization of the operation name allows this requirement to be met when a Java SEI
contains overloaded methods.

♦ Conformance (Method name disambiguation):An implementation MUST support the use of thejavax-
.jws.WebMethod annotation to disambiguate overloaded Java method names when mapped to WSDL.

3.2 Package

A Java package is mapped to awsdl:definitions element and an associatedtargetNamespace at-
tribute. Thewsdl:definitions element acts as a container for other WSDL elements that together form
the WSDL description of the constructs in the correspondingJava package.

A default value for thetargetNamespace attribute is derived from the package name as follows:

April 19, 2006 JAX-WS 2.0 29

Chapter 3. Java to WSDL 1.1 Mapping

1. The package name is tokenized using the “.” character as a delimiter.

2. The order of the tokens is reversed.

3. The value of thetargetNamespace attribute is obtained by concatenating “http://”to the list of
tokens separated by “ . ”and “/”.

E.g., the Java package “com.example.ws” would be mapped to the target namespace “http://ws.example-
.com/ ”.

♦ Conformance (Package name mapping):Thejavax.jws.WebService annotation (see section 7.11.1)
MAY be used to specify the target namespace to use for a Web service and MUST be used for classes or
interfaces in no package. In the absence of ajavax.jws.WebService annotation the Java package name
MUST be mapped to the value of thewsdl:definitions element’stargetNamespace attribute using
the algorithm defined above.

No specific authoring style is required for the mapped WSDL document; implementations are free to gen-
erate WSDL that uses the WSDL and XML Schema import directives.

♦ Conformance (WSDL and XML Schema import directives):Generated WSDL MUST comply with the
WS-I Basic Profile 1.0[8] restrictions (See R2001, R2002, and R2003) on usage of WSDL and XML Schema
import directives.

3.3 Class

A Java class (not an interface) annotated with ajavax.jws.WebService annotation can be used to define
a Web service.

In order to allow for a separation between Web service interface and implementation, if theWebService
annotation on the class under consideration has aendpointInterface element, then the interface referred
by this element is for all purposes the SEI associated with the class.

Otherwise, the class implicitly defines a service endpointinterface (SEI) which comprises all of the public
methods that satisfy one of the following conditions:

1. They are annotated with thejavax.jws.WebMethod annotation with theexclude element set to
false or missing (sincefalse is the default for this annotation element).

2. They are not annotated with thejavax.jws.WebMethod annotation but their declaring class has a
javax.jws.WebService annotation.

For mapping purposes, this implicit SEI and its methods are considered to be annotated with the same Web
service-related annotations that the original class and its methods have.

In pratice, in order to exclude a public method of a class annotated withWebService and not directly
specifying aendpointInterface from the implicitly defined SEI, it is necessary to annotatethe method
with aWebMethod annotation with theexclude element set totrue.

♦ Conformance (Class mapping):An implementation MUST support the mapping ofjavax.jws.Web-

Service annotated classes to implicit service endpoint interfaces.

For mapping purposes, this class must be a top level class or astatic inner class. As defined by JSR 181, a
class annotated withjavax.jws.WebService must have a default public constructor.

30 JAX-WS 2.0 April 19, 2006

3.4. Interface

3.4 Interface

A Java service endpoint interface (SEI) is mapped to awsdl:portType element. Thewsdl:portType
element acts as a container for other WSDL elements that together form the WSDL description of the
methods in the corresponding Java SEI. An SEI is a Java interface that meets all of the following criteria:

• It MUST carry ajavax.jws.WebService annotation (see 7.11.1).

• Any of its methods MAY carry ajavax.jws.WebMethod annotation (see 7.11.2).

• javax.jws.WebMethod if used, MUST NOT have theexclude element set totrue.

• All method parameters and return types are compatible withthe JAXB 2.0[10] Java to XML Schema
mapping definition

♦ Conformance (portType naming):Thejavax.jws.WebService annotation (see section 7.11.1) MAY
be used to customize thename andtargetNamespace attributes of thewsdl:portType element. If not
customized, the value of thename attribute of thewsdl:portType element MUST be the name of the SEI
not including the package name and the target namespace is computed as defined above in section 3.2.

Figure 3.1 shows an example of a Java SEI and the corresponding wsdl:portType.

3.4.1 Inheritance

WSDL 1.1 does not define a standard representation for the inheritance ofwsdl:portType elements.
When mapping an SEI that inherits from another interface, the SEI is treated as if all methods of the inherited
interface were defined within the SEI.

♦ Conformance (Inheritance flattening):A mappedwsdl:portType element MUST contain WSDL def-
initions for all the methods of the corresponding Java SEI including all inherited methods.

♦ Conformance (Inherited interface mapping):An implementation MAY map inherited interfaces to addi-
tionalwsdl:portType elements within thewsdl:definitions element.

3.5 Method

Each public method in a Java SEI is mapped to awsdl:operation element in the correspondingwsdl-
:portType plus one or morewsdl:message elements.

♦ Conformance (Operation naming):In the absence of customizations, the value of thename attribute of
thewsdl:operation element MUST be the name of the Java method. Thejavax.jws.WebMethod (see
7.11.2) annotation MAY be used to customize the value of thename attribute of thewsdl:operation
element and MUST be used to resolve naming conflicts. If theexclude element of thejavax.jws-
.WebMethod is set totrue then the Java method MUST NOT be present in the wsdl as awsdl:operation

element.

Methods are either one-way or two-way: one way methods have an input but produce no output, two way
methods have an input and produce an output. Section 3.5.1 describes one way operations further.

Thewsdl:operation element corresponding to each method has one or more child elements as follows:

April 19, 2006 JAX-WS 2.0 31

Chapter 3. Java to WSDL 1.1 Mapping

• A wsdl:input element that refers to an associatedwsdl:message element to describe the operation
input.

• (Two-way methods only) an optionalwsdl:output element that refers to awsdl:message to de-
scribe the operation output.

• (Two-way methods only) zero or morewsdl:fault child elements, one for each exception thrown
by the method. Thewsdl:fault child elements refer to associatedwsdl:message elements to
describe each fault. See section 3.7 for further details on exception mapping.

The value of awsdl:message element’sname attribute is not significant but by convention it is normally
equal to the corresponding operation name for input messages and the operation name concatenated with
“Response” for output messages. Naming of fault messages isdescribed in section section 3.7.

Eachwsdl:message element has one of the following1:

Document style A singlewsdl:part child element that refers, via anelement attribute, to a global ele-
ment declaration in thewsdl:types section.

RPC style Zero or morewsdl:part child elements (one per method parameter and one for a non-void
return value) that refer, via atype attribute, to named type declarations in thewsdl:types section.

Figure 3.1 shows an example of mapping a Java interface containing a single method to WSDL 1.1 using
document style. Figure 3.2 shows an example of mapping a Javainterface containing a single method to
WSDL 1.1 using RPC style.

Section 3.6 describes the mapping from Java methods and their parameters to corresponding global element
declarations and named types in thewsdl:types section.

3.5.1 One Way Operations

Only Java methods whose return type isvoid, that have no parameters that implementHolder and that do
not throw any checked exceptions can be mapped to one-way operations. Not all Java methods that fulfill
this requirement are amenable to become one-way operationsand automatic choice between two-way and
one-way mapping is not possible.

♦ Conformance (One-way mapping):Implementations MUST support use of thejavax.jws.OneWay (see
7.11.3) annotation to specify which methods to map to one-way operations. Methods that are not annotated
with javax.jws.OneWay MUST NOT be mapped to one-way operations.

♦ Conformance (One-way mapping errors):Implementations MUST prevent mapping to one-way opera-
tions of methods that do not meet the necessary criteria.

3.6 Method Parameters and Return Type

A Java method’s parameters and return type are mapped to components of either the messages or the
global element declarations mapped from the method. Parameters can be mapped to components of the

1Thejavax.jws.WebParam andjavax.jws.WebResult annotations can introduce additional parts into mes-
sages when theheader element istrue.

32 JAX-WS 2.0 April 19, 2006

3.6. Method Parameters and Return Type

1 // Java
2 package com.example;
3 @WebService
4 public interface StockQuoteProvider {
5 float getPrice(String tickerSymbol)
6 throws TickerException;
7 }
8
9 <!-- WSDL extract -->

10 <types>
11 <xsd:schema targetNamespace="...">
12 <!-- element declarations -->
13 <xsd:element name="getPrice"
14 type="tns:getPriceType"/>
15 <xsd:element name="getPriceResponse"
16 type="tns:getPriceResponseType"/>
17 <xsd:element name="TickerException"
18 type="tns:TickerExceptionType"/>
19
20 <!-- type definitions -->
21 ...
22 </xsd:schema>
23 </types>
24
25 <message name="getPrice">
26 <part name="getPrice" element="tns:getPrice"/>
27 </message>
28
29
30 <message name="getPriceResponse">
31 <part name="getPriceResponse" element="tns:getPriceResponse"/>
32 </message>
33
34
35 <message name="TickerException">
36 <part name="TickerException" element="tns:TickerException"/>
37 </message>
38
39
40 <portType name="StockQuoteProvider">
41 <operation name="getPrice">
42 <input message="tns:getPrice"/>
43 <output message="tns:getPriceResponse"/>
44 <fault message="tns:TickerException"/>
45 </operation>
46 </portType>

Figure 3.1: Java interface to WSDL portType mapping using document style

April 19, 2006 JAX-WS 2.0 33

Chapter 3. Java to WSDL 1.1 Mapping

1 // Java
2 package com.example;
3 @WebService
4 public interface StockQuoteProvider {
5 float getPrice(String tickerSymbol)
6 throws TickerException;
7 }
8
9 <!-- WSDL extract -->

10 <types>
11 <xsd:schema targetNamespace="...">
12 <!-- element declarations -->
13 <xsd:element name="TickerException"
14 type="tns:TickerExceptionType"/>
15
16 <!-- type definitions -->
17 ...
18 </xsd:schema>
19 </types>
20
21 <message name="getPrice">
22 <part name="tickerSymbol" type="xsd:string"/>
23 </message>
24
25
26 <message name="getPriceResponse">
27 <part name="return" type="xsd:float"/>
28 </message>
29
30
31 <message name="TickerException">
32 <part name="TickerException" element="tns:TickerException"/>
33 </message>
34
35
36 <portType name="StockQuoteProvider">
37 <operation name="getPrice">
38 <input message="tns:getPrice"/>
39 <output message="tns:getPriceResponse"/>
40 <fault message="tns:TickerException"/>
41 </operation>
42 </portType>

Figure 3.2: Java interface to WSDL portType mapping using RPC style

34 JAX-WS 2.0 April 19, 2006

3.6. Method Parameters and Return Type

message or global element declaration for either the operation input message, operation output message
or both. The mapping depends on the parameter classification.Thejavax.jws.WebParam annotation’s
header element MAY be used to map parameters to SOAP headers. Headerparameters MUST be included
assoap:header elements in the operation’s input message. Thejavax.jws.WebResult annotation’s
header element MAY be used to map results to SOAP headers. Header results MUST be included as
soap:header elements in the operation’s output message.

3.6.1 Parameter and Return Type Classification

Method parameters and return type are classified as follows:

in The value is transmitted by copy from a service client to the SEI but is not returned from the service
endpoint to the client.

out The value is returned by copy from an SEI to the client but is not transmitted from the client to the
service endpoint implementation.

in/out The value is transmitted by copy from a service client to the SEI and is returned by copy from the
SEI to the client.

A methods return type is alwaysout. For method parameters, holder classes are used to determine the
classification. javax.xml.ws.Holder. A parameter whose type is a parameterizedjavax.xml.ws-

.Holder<T> class is classified asin/out or out, all other parameters are classified asin.

♦ Conformance (Parameter classification):Thejavax.jws.WebParam annotation (see 7.11.4) MAY be
used to specify whether a holder parameter is treated asin/out or out. If not specified, the default MUST
bein/out.

♦ Conformance (Parameter naming):Thejavax.jws.WebParam annotation (see 7.11.4) MAY be used to
specify thename of thewsdl:part or XML Schema element declaration corresponding to a Java parameter.
If both the name and partName elements are used in thejavax.jws.WebParam annotation then the
partName MUST be used for thewsdl:part name attribute and thename element from the annotation
will be ignored. If not specified, the default is “argN”, whereN is replaced with the zero-based argument
index. Thus, for instance, the first argument of a method will have a default parameter name of “arg0”, the
second one “arg1”and so on.

♦ Conformance (Result naming):Thejavax.jws.WebResult annotation (see 7.11.4) MAY be used to
specify thename of thewsdl:part or XML Schema element declaration corresponding to the Javamethod
return type. If both thename andpartName elements are used in thejavax.jws.WebResult annota-
tions then thepartName MUST be used for thewsdl:part name attribute and thename elment from the
annotation will be ignored. In the absence of customizations, the default name isreturn.

♦ Conformance (Header mapping of parameters and results):The javax.jws.WebParam annotation’s -
header element MAY be used to map parameters to SOAP headers. Headerparameters MUST be included
assoap:header elements in the operation’s input message. Thejavax.jws.WebResult annotation’s
header element MAY be used to map results to SOAP headers. Header results MUST be included as
soap:header elements in the operation’s output message.

April 19, 2006 JAX-WS 2.0 35

Chapter 3. Java to WSDL 1.1 Mapping

3.6.2 Use of JAXB

JAXB defines a mapping from Java classes to XML Schema constructs. JAX-WS uses this mapping to
generate XML Schema named type and global element declarations that are referred to from within the
WSDL message constructs generated for each operation.

Three styles of Java to WSDL mapping are supported: documentwrapped, document bare and RPC. The
styles differ in what XML Schema constructs are generated for a method. The three styles are described in
the following subsections.

Thejavax.jws.SOAPBinding annotation MAY be used to specify at the type level which style to use for
all methods it contains or on a per method basis if thestyle is document.

3.6.2.1 Document Wrapped

This style is identified by ajavax.jws.SOAPBinding annotation with the following properties: astyle
of DOCUMENT, ause of LITERAL and aparameterStyle of WRAPPED.

For the purposes of utilizing the JAXB mapping, each method is converted to two Java bean classes: one for
the method input (henceforth called therequest bean) and one for the method output (henceforth called the
response bean).

♦ Conformance (Default wrapper bean names):In the absence of customizations, the wrapper request bean
class MUST be named the same as the method and the wrapper response bean class MUST be named the
same as the method with a “Response” suffix. The first letterof each bean name is capitalized to follow
Java class naming conventions.

♦ Conformance (Default wrapper bean package):In the absence of customizations, the wrapper beans pack-
age MUST be a generatedjaxws subpackage of the SEI package.

The javax.xml.ws.RequestWrapper and javax.xml.ws.ResponseWrapper annotations (see 7.3
and 7.4) MAY be used to customize the name of the generated wrapper bean classes.

♦ Conformance (Wrapper element names):Thejavax.xml.ws.RequestWrapperandjavax.xml.ws-
.ResponseWrapper annotations (see 7.3 and 7.4) MAY be used to specify the qualified name of the ele-
ments generated for the wrapper beans.

♦ Conformance (Wrapper bean name clash):Generated bean classes must have unique names within a pack-
age and MUST NOT clash with other classes in that package. Clashes during generation MUST be reported
as an error and require user intervention via name customization to correct. Note that some platforms do not
distiguish filenames based on case so comparisons MUST ignore case.

A request bean is generated containing properties for eachin andin/out non-header parameter. A re-
sponse bean is generated containing properties for the method return value, eachout non-header parameter,
andin/out non-header parameter. Method return values are represented by anout property named “re-
turn”. The order of the properties in the request bean is the same as the order of parameters in the method
signature. The order of the properties in the response bean is the property corresponding to the return value
(if present) followed by the properties for the parameters in the same order as the parameters in the method
signature.

The request and response beans are generated with the appropriate JAXB customizations to result in a global
element declaration for each bean class when mapped to XML Schema by JAXB. The corresponding global

36 JAX-WS 2.0 April 19, 2006

3.6. Method Parameters and Return Type

element declarations MUST NOT have the nillable attribute set to a value of true. Whereas the element name
is derived from theRequestWrapper or ResponseWrapper annotations, its type is named according to
the operation name (for the local part) and the target namespace for the portType that contains the operation
(for the namespace name).

Figure 3.3 illustrates this conversion.

1 float getPrice(@WebParam(name="tickerSymbol") String sym);
2
3 @XmlRootElement(name="getPrice", targetNamespace="...")
4 @XmlType(name="getPrice", targetNamespace="...")
5 @XmlAccessorType(AccessType.FIELD)
6 public class GetPrice {
7 @XmlElement(name="tickerSymbol", targetNamespace="")
8 public String tickerSymbol;
9 }

10
11 @XmlRootElement(name="getPriceResponse", targetNamespace="...")
12 @XmlType(name="getPriceResponse", targetNamespace="...")
13 @XmlAccessorType(AccessType.FIELD)
14 public class GetPriceResponse {
15 @XmlElement(name="return", targetNamespace="")
16 public float _return;
17 }

Figure 3.3: Wrapper mode bean representation of an operation

When the JAXB mapping to XML Schema is utilized this results in global element declarations for the
mapped request and response beans with child elements for each method parameter according to the param-
eter classification:

in The parameter is mapped to a child element of the global element declaration for the request bean.

out The parameter or return value is mapped to a child element of the global element declaration for the
response bean. In the case of a parameter, the class of the value of the holder class (see section 3.6.1)
is used for the mapping rather than the holder class itself.

in/out The parameter is mapped to a child element of the global element declarations for the request and
response beans. The class of the value of the holder class (see section 3.6.1) is used for the mapping
rather than the holder class itself.

The global element declarations are used as the values of thewsdl:part elementselement attribute, see
figure 3.1.

3.6.2.2 Document Bare

This style is identified by ajavax.jws.SOAPBinding annotation with the following properties: astyle
of DOCUMENT, ause of LITERAL and aparameterStyle of BARE.

In order to qualify for use of bare mapping mode a Java method must fulfill all of the following criteria:

1. It must have at most onein or in/out non-header parameter.

April 19, 2006 JAX-WS 2.0 37

Chapter 3. Java to WSDL 1.1 Mapping

2. If it has a return type other thanvoid it must have noin/out or out non-header parameters.

3. If it has a return type ofvoid it must have at most onein/out or out non-header parameter.

If present, the type of the input parameter is mapped to a named XML Schema type using the mapping
defined by JAXB. If the input parameter is a holder class thenthe class of the value of the holder is used
instead.

If present, the type of the output parameter or return value is mapped to a named XML Schema type using
the mapping defined by JAXB. If an output parameter is used then the class of the value of the holder class
is used.

A global element declaration is generated for the method input and, in the absence of aWebParam anno-
tation, its local name is equal to the operation name. A global element declaration is generated for the
method output and, in the absence of aWebParam or WebResult annotation, the local name is equal to the
operation name suffixed with “Response”. The type of the twoelements depends on whether a type was
generated for the corresponding element or not:

Named type generatedThe type of the global element is the named type.

No type generatedThe type of the element is an anonymous empty type.

The namespace name of the input and output global elements isthe value of thetargetNamespace at-
tribute of the WSDLdefinitions element.

The nillable attribute of the generated global elements MUST have a value of true if and only if the corre-
sponding Java types are reference types.

The global element declarations are used as the values of thewsdl:part elementselement attribute, see
figure 3.1.

3.6.2.3 RPC

This style is identified by ajavax.jws.SOAPBinding annotation with the following properties: astyle
of RPC, ause of LITERAL and aparameterStyle of WRAPPED2.

The Java types of eachin, out andin/out parameter and the return value are mapped to named XML
Schema types using the mapping defined by JAXB. Forout andin/out parameters the class of the value
of the holder is used rather than the holder itself.

Each method parameter and the return type is mapped to a message part according to the parameter classif-
ication:

in The parameter is mapped to a part of the input message.

out The parameter or return value is mapped to a part of the outputmessage.

in/out The parameter is mapped to a part of the input and output message.

The named types are used as the values of thewsdl:part elementstype attribute, see figure 3.2. The
value of thename attribute of eachwsdl:part element is the name of the corresponding method parameter
or “return”for the method return value.

2Use ofRPC style requires use ofWRAPPED parameter style. Deviations from this is an error

38 JAX-WS 2.0 April 19, 2006

3.7. Service Specific Exception

Due to the limitations described in section 5.3.1 of the WS-IBasic Profile specification (see [8]), null values
cannot be used as method arguments or as the return value froma method which uses the rpc/literal binding.

♦ Conformance (Null Values in rpc/literal):If a null value is passed as an argument to a method, or returned
from a method, that uses the rpc/literal style, then an implementation MUST throw aWebServiceException.

3.7 Service Specific Exception

A service specific Java exception is mapped to awsdl:fault element, awsdl:message element with
a single childwsdl:part element and an XML Schema global element declaration. Thewsdl:fault

element appears as a child of thewsdl:operation element that corresponds to the Java method that
throws the exception and refers to thewsdl:message element. Thewsdl:part element refers to an XML
Schema global element declaration that describes the fault.

♦ Conformance (Exception naming):In the absence of customizations, the name of the global element dec-
laration for a mapped exception MUST be the name of the Java exception. Thejavax.xml.ws.WebFault
annotation MAY be used to customize the local name and namespace name of the element.

JAXB defines the mapping from a Java bean to XML Schema element declarations and type definitions
and is used to generate the global element declaration that describes the fault. For exceptions that match
the pattern described in section 2.5 (i.e. exceptions that have agetFaultInfo method andWebFault
annotation), theFaultBeanis used as input to JAXB when mapping the exception to XML Schema. For
exceptions that do not match the pattern described in section 2.5, JAX-WS maps those exceptions to Java
beans and then uses those Java beans as input to the JAXB mapping. The following algorithm is used to
map non-matching exception classes to the corresponding Java beans for use with JAXB:

1. In the absence of customizations, the name of the bean is the same as the name of the Exception
suffixed with “Bean”.

2. In the absence of customizations, the package of the bean is a generatedjaxws subpackage of the
SEI package. E.g. if the SEI package iscom.example.stockquote then the package of the bean
would becom.example.stockquote.jaxws.

3. For each getter in the exception and its superclasses, a property of the same type and name is added
to the bean. ThegetCause, getLocalizedMessage andgetStackTrace getters fromjava-
.lang.Throwable and thegetClass getter fromjava.lang.Object are excluded from the list
of getters to be mapped.

4. The bean is annotated with a JAXB@XmlType annotation whosename property is set to the name
of the exception and whosenamespace property is set to the namespace name mapped from the
exception package name. Additionally, the@XmlType annotation has apropOrder property whose
value is an array containing the names of all the properties of the exception class that were mapped
in the previous bullet point, sorted lexicographically according to the Unicode value of each of their
characters (i.e. using the same algorithm that theint java.lang.String.compareTo(String)

method uses).

5. The bean is annotated with a JAXB@XmlRootElement annotation whosename property is set, in
the absence of customizations, to the name of the exception.

April 19, 2006 JAX-WS 2.0 39

Chapter 3. Java to WSDL 1.1 Mapping

♦ Conformance (Fault bean name clash):Generated bean classes must have unique names within a package
and MUST NOT clash with other classes in that package. Clashes during generation MUST be reported as
an error and require user intervention via name customization to correct. Note that some platforms do not
distiguish filenames based on case so comparisons MUST ignore case.

Figure 3.4 illustrates this mapping.

1 @WebFault(name="UnknownTickerFault", targetNamespace="...")
2 public class UnknownTicker extends Exception {
3 ...
4 public UnknownTicker(Sting ticker) { ... }
5 public UnknownTicker(Sting ticker, String message) { ... }
6 public UnknownTicker(Sting ticker, String message, Throwable cause)
7 { ... }
8 public String getTicker() { ... }
9 }

10
11 @XmlRootElement(name="UnknownTickerFault" targetNamespace="...")
12 @XmlAccessorType(AccessType.FIELD)
13 @XmlType(name="UnknownTicker", namespace="...",
14 propOrder={"message", "ticker"})
15 public class UnknownTickerBean {
16 ...
17 public UnknownTickerBean() { ... }
18 public String getTicker() { ... }
19 public void setTicker(String ticker) { ... }
20 public String getMessage() { ... }
21 public void setMessage(String message) { ... }
22 }

Figure 3.4: Mapping of an exception to a bean for use with JAXB.

3.8 Bindings

In WSDL 1.1, an abstract port type can be bound to multiple protocols.

♦ Conformance (Binding selection):An implementation MUST generate a WSDL binding according to
the rules of the binding denoted by theBindingType annotation (see 7.8), if present, otherwise the default
is the SOAP 1.1/HTTP binding (see 10).

Each protocol binding extends a common extensible skeletonstructure and there is one instance of each such
structure for each protocol binding. An example of a port type and associated binding skeleton structure is
shown in figure 3.5.

The common skeleton structure is mapped from Java as described in the following subsections.

3.8.1 Interface

A Java SEI is mapped to awsdl:binding element and zero or morewsdl:port extensibility elements.

40 JAX-WS 2.0 April 19, 2006

3.9. Generics

1 <portType name="StockQuoteProvider">
2 <operation name="getPrice" parameterOrder="tickerSymbol">
3 <input message="tns:getPrice"/>
4 <output message="tns:getPriceResponse"/>
5 <fault message="tns:unknowntickerException"/>
6 </operation>
7 </portType>
8
9 <binding name="StockQuoteProviderBinding">

10 <!-- binding specific extensions possible here -->
11 <operation name="getPrice">
12 <!-- binding specific extensions possible here -->
13 <input message="tns:getPrice">
14 <!-- binding specific extensions possible here -->
15 </input>
16 <output message="tns:getPriceResponse">
17 <!-- binding specific extensions possible here -->
18 </output>
19 <fault message="tns:unknowntickerException">
20 <!-- binding specific extensions possible here -->
21 </fault>
22 </operation>
23 </binding>

Figure 3.5: WSDL portType and associated binding

Thewsdl:binding element acts as a container for other WSDL elements that together form the WSDL de-
scription of the binding to a protocol of the correspondingwsdl:portType. The value of thename attribute
of thewsdl:binding is not significant, by convention it contains the qualifiedname of the corresponding
wsdl:portType suffixed with “Binding”.

Thewsdl:port extensibility elements define the binding specific endpoint address for a given port, see
section 3.11.

3.8.2 Method and Parameters

Each method in a Java SEI is mapped to awsdl:operation child element of the correspondingwsdl-
:binding. The value of thename attribute of thewsdl:operation element is the same as the corre-
spondingwsdl:operation element in the boundwsdl:portType. Thewsdl:operation element has
wsdl:input, wsdl:output, andwsdl:fault child elements if they are present in the corresponding
wsdl:operation child element of thewsdl:portType being bound.

3.9 Generics

In JAX-WS when starting from Java and if generics are used in the document wrapped case, impelementa-
tions are required to use type erasure(see JLS section 4.6 for definition of Type Erasure) when generating
the request / response wrapper beans and exception beans except in the case ofCollections. Type erasure
is a mapping from parameterized types or type variables to types that are never parameterized types or type
variables. Erasure basically gets rid of all the generic type information from the runtime representation. In
the case ofCollection instead of applying erasure on theCollection itself, erasure would be applied to

April 19, 2006 JAX-WS 2.0 41

Chapter 3. Java to WSDL 1.1 Mapping

the type ofCollection i.e it would beCollection<erasure(T)>. The following code snippets shows
the result of erasure on a wrapper bean that is generated whenusing generics:

1 public <T extends Shape> T setColor(T shape, Color color) {
2 shape.setColor(color);
3 return shape;
4 }

The generated wrapper bean would be

1 @XmlRootElement(name = "setColor", namespace = "...")
2 @XmlAccessorType(AccessType.FIELD)
3 @XmlType(name = "setColor", namespace = "...")
4 public class SetColor {
5
6 @XmlElement(name = "arg0", namespace = "")
7 private Shape arg0;
8
9 @XmlElement(name = "arg1", namespace = "")

10 private Color arg0;
11
12
13 public Shape getArg0() {
14 return this.arg0;
15 }
16
17 public void setArg0(Shape arg0) {
18 this.arg0 = arg0;
19 }
20
21 public Color getArg1() {
22 return this.arg1;
23 }
24
25 public void setArg1(Color arg1) {
26 this.arg1 = arg1;
27 }
28
29 }

The following code snippets shows the resulting wrapper bean when using Collections:

1 public List<Shape> echoShapeList(List<Shape> list) {
2 return list;
3 }

The generated wrapper bean would be

1 @XmlRootElement(name = "echoShapeList", namespace = "...")
2 @XmlAccessorType(AccessType.FIELD)
3 @XmlType(name = "echoShapeList", namespace = "...")
4 public class EchoShapeList {

42 JAX-WS 2.0 April 19, 2006

3.9. Generics

5
6 @XmlElement(name = "arg0", namespace = "")
7 private List<Shape> arg0;
8
9 public List<Shape> getArg0() {

10 return this.arg0;
11 }
12
13 public void setArg0(List<Shape> arg0) {
14 this.arg0 = arg0;
15 }
16 }
17

1 public <T> T echoTList(List<T> list) {
2 if (list.size() == 0)
3 return null;
4 return list.iterator().next();
5 }

The generated wrapper bean would be

1 @XmlRootElement(name = "echoTList", namespace = "...")
2 @XmlAccessorType(AccessType.FIELD)
3 @XmlType(name = "echoTList", namespace = "...")
4 public class EchoTList {
5
6 @XmlElement(name = "arg0", namespace = "")
7 private List<Object> arg0;
8
9 public List<Object> getArg0() {

10 return this.arg0;
11 }
12
13 public void setArg0(List<Object> arg0) {
14 this.arg0 = arg0;
15 }
16 }
17

1 public List<? extends Shape> setArea(List<? extends Shape> list) {
2 Iterator iterator = list.iterator();
3 while(iterator.haNext()) {
4 iterator.next().setArea(...);
5 }
6 return list;
7 }

The generated wrapper bean would be

1 @XmlRootElement(name = "setArea", namespace = "...")
2 @XmlAccessorType(AccessType.FIELD)
3 @XmlType(name = "setArea", namespace = "...")

April 19, 2006 JAX-WS 2.0 43

Chapter 3. Java to WSDL 1.1 Mapping

4 public class SetArea {
5
6 @XmlElement(name = "arg0", namespace = "")
7 private List<Shape> arg0;
8
9 public List<Shape> getArg0() {

10 return this.arg0;
11 }
12
13 public void setArg0(List<Shape> arg0) {
14 this.arg0 = arg0;
15 }
16 }

3.10 SOAP HTTP Binding

This section describes the additional WSDL binding elements generated when mapping Java to WSDL 1.1
using the SOAP HTTP binding.

♦ Conformance (SOAP binding support):Implementations MUST be able to generate SOAP HTTP bind-
ings when mapping Java to WSDL 1.1.

Figure 3.6 shows an example of a SOAP HTTP binding.

1 <binding name="StockQuoteProviderBinding">
2 <soap:binding
3 transport="http://schemas.xmlsoap.org/soap/http"
4 style="document"/>
5 <operation name="getPrice">
6 <soap:operation style="document|rpc"/>
7 <input message="tns:getPrice">
8 <soap:body use="literal"/>
9 </input>

10 <output message="tns:getPriceResponse">
11 <soap:body use="literal"/>
12 </output>
13 <fault message="tns:unknowntickerException">
14 <soap:fault use="literal"/>
15 </fault>
16 </operation>
17 </binding>

Figure 3.6: WSDL SOAP HTTP binding

3.10.1 Interface

A Java SEI is mapped to asoap:binding child element of the correspondingwsdl:binding element
plus asoap:address child element of any correspondingwsdl:port element (see section 3.11).

The value of thetransport attribute of thesoap:binding ishttp://schemas.xmlsoap.org/soap-
/http. The value of thestyle attribute of thesoap:binding is eitherdocument or rpc.

44 JAX-WS 2.0 April 19, 2006

3.11. Service and Ports

♦ Conformance (SOAP binding style required):Implementations MUST include astyle attribute on a
generatedsoap:binding.

3.10.2 Method and Parameters

Each method in a Java SEI is mapped to asoap:operation child element of the correspondingwsdl-
:operation. The value of thestyle attribute of thesoap:operation is document or rpc. If not
specified, the value defaults to the value of thestyle attribute of thesoap:binding. WS-I Basic Prof-
ile[8] requires that all operations within a given SOAP HTTPbinding instance have the same binding style.

The parameters of a Java method are mapped tosoap:body or soap:header child elements of the
wsdl:input andwsdl:output elements for eachwsdl:operation binding element. The value of the
use attribute of thesoap:body is literal. Figure 3.7 shows an example using document style, figure 3.8
shows the same example using rpc style.

3.11 Service and Ports

A Java service implementation class is mapped to a singlewsdl:service element that is a child of a
wsdl:definitions element for the appropriate target namespace. The latter ismapped from the value of
thetargetNamespace element of theWebService annotation, if non-empty value, otherwise from the
package of the Java service implementation class accordingto the rules in section 3.2.

In mapping a@WebService-annotated class (see 3.3) to awsdl:service, theserviceName element
of the WebService annotation are used to derive the service name. The value of the name attribute of
the wsdl:service element is computed according to the JSR-181 [13] specification. It is given by the
serviceName element of theWebService annotation, if present with a non-default value, otherwisethe
name of the implementation class with the “Service”suffix appended to it.

♦ Conformance (Service creation):Implementations MUST be able to map classes annotated with thejavax-
.jws.WebService annotation to WSDLwsdl:service elements.

A WSDL 1.1 service is a collection of relatedwsdl:port elements. Awsdl:port element describes a
port type bound to a particular protocol (awsdl:binding) that is available at particular endpoint address.

Each desired port is represented by awsdl:port child element of the singlewsdl:service element
mapped from the Java package. JAX-WS 2.0 allows specifying one port of one binding type for each
service defined by the application. Implementations MAY support additional ports, as long as their names
do not conflict with the standard one.

♦ Conformance (Port selection):TheportName element of theWebService annotation, if present, MUST
be used to derive the port name to use in WSDL. In the absence ofa portName element, an implementa-
tion MUST use the value of thename element of theWebService annotation, if present, suffixed with
“Port”. Otherwise, an implementation MUST use the simple name of the class annotated withWebService
suffixed with “Port”.

♦ Conformance (Port binding):The WSDL port defined for a service MUST refer to a binding of the type
indicated by theBindingType annotation on the service implementation class (see 3.8).

Binding specific child extension elements of thewsdl:port element define the endpoint address for a port.
E.g. see thesoap:address element described in section 3.10.1.

April 19, 2006 JAX-WS 2.0 45

Chapter 3. Java to WSDL 1.1 Mapping

1 <types>
2 <schema targetNamespace="...">
3 <xsd:element name="getPrice" type="tns:getPriceType"/>
4 <xsd:complexType name="getPriceType">
5 <xsd:sequence>
6 <xsd:element name="tickerSymbol" type="xsd:string"/>
7 </xsd:sequence>
8 </xsd:complexType>
9

10 <xsd:element name="getPriceResponse"
11 type="tns:getPriceResponseType"/>
12 <xsd:complexType name="getPriceResponseType">
13 <xsd:sequence>
14 <xsd:element name="return" type="xsd:float"/>
15 </xsd:sequence>
16 </xsd:complexType>
17 </schema>
18 </types>
19
20 <message name="getPrice">
21 <part name="getPrice"
22 element="tns:getPrice"/>
23 </message>
24
25 <message name="getPriceResponse">
26 <part name="getPriceResponse" element="tns:getPriceResponse"/>
27 </message>
28
29 <portType name="StockQuoteProvider">
30 <operation name="getPrice" parameterOrder="tickerSymbol">
31 <input message="tns:getPrice"/>
32 <output message="tns:getPriceResponse"/>
33 </operation>
34 </portType>
35
36 <binding name="StockQuoteProviderBinding">
37 <soap:binding
38 transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
39 <operation name="getPrice" parameterOrder="tickerSymbol">
40 <soap:operation/>
41 <input message="tns:getPrice">
42 <soap:body use="literal"/>
43 </input>
44 <output message="tns:getPriceResponse">
45 <soap:body use="literal"/>
46 </output>
47 </operation>
48 </binding>

Figure 3.7: WSDL definition using document style

46 JAX-WS 2.0 April 19, 2006

3.11. Service and Ports

1 <types>
2 <schema targetNamespace="...">
3 <xsd:element name="getPrice" type="tns:getPriceType"/>
4 <xsd:complexType name="getPriceType">
5 <xsd:sequence>
6 <xsd:element form="unqualified" name="tickerSymbol"
7 type="xsd:string"/>
8 </xsd:sequence>
9 </xsd:complexType>

10
11 <xsd:element name="getPriceResponse"
12 type="tns:getPriceResponseType"/>
13 <xsd:complexType name="getPriceResponseType">
14 <xsd:sequence>
15 <xsd:element form="unqualified" name="return"
16 type="xsd:float"/>
17 </xsd:sequence>
18 </xsd:complexType>
19 </schema>
20 </types>
21
22 <message name="getPrice">
23 <part name="tickerSymbol" type="xsd:string"/>
24 </message>
25
26 <message name="getPriceResponse">
27 <part name="result" type="xsd:float"/>
28 </message>
29
30 <portType name="StockQuoteProvider">
31 <operation name="getPrice">
32 <input message="tns:getPrice"/>
33 <output message="tns:getPriceResponse"/>
34 </operation>
35 </portType>
36
37 <binding name="StockQuoteProviderBinding">
38 <soap:binding
39 transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
40 <operation name="getPrice">
41 <soap:operation/>
42 <input message="tns:getPrice">
43 <soap:body use="literal"/>
44 </input>
45 <output message="tns:getPriceResponse">
46 <soap:body use="literal"/>
47 </output>
48 </operation>
49 </binding>

Figure 3.8: WSDL definition using rpc style

April 19, 2006 JAX-WS 2.0 47

Chapter 3. Java to WSDL 1.1 Mapping

48 JAX-WS 2.0 April 19, 2006

Chapter 4

Client APIs

This chapter describes the standard APIs provided for client side use of JAX-WS. These APIs allow a client
to create proxies for remote service endpoints and dynamically construct operation invocations.

Conformance requirements in this chapter use the term ‘implementation’ to refer to a client side JAX-WS
runtime system.

4.1 javax.xml.ws.Service

Service is an abstraction that represents a WSDL service. A WSDLservice is a collection of related
ports, each of which consists of a port type bound to a particular protocol and available at a particular
endpoint address.

Service instances are created as described in section 4.1.1.Service instances provide facilities to:

• Create an instance of a proxy via one of thegetPort methods. See section 4.2.3 for information on
proxies.

• Create aDispatch instance via thecreateDispatch method. See section 4.3 for information on
theDispatch interface.

• Create a new port via theaddPortmethod. Such ports only include binding and endpoint information
and are thus only suitable for creatingDispatch instances since these do not require WSDL port type
information.

• Configure per-service, per-port, and per-protocol message handlers using a handler resolver (see sec-
tion 4.1.3).

• Configure thejava.util.concurrent.Executor to be used for asynchronous invocations (see
section 4.1.4).

♦ Conformance (Service completeness):A Service implementation MUST be capable of creating prox-
ies,Dispatch instances, and new ports.

All the service methods except the staticcreate methods and the constructors delegate tojavax.xml-

.ws.spi.ServiceDelegate, see section 6.3.

April 19, 2006 JAX-WS 2.0 49

Chapter 4. Client APIs

4.1.1 Service Usage

4.1.1.1 Dynamic case

In the dynamic case, when nothing is generated, a J2SE service client usesService.create to create
Service instances, the following code illustrates this process.

1 URL wsdlLocation = new URL("http://example.org/my.wsdl");
2 QName serviceName = new QName("http://example.org/sample", "MyService");
3 Service s = Service.create(wsdlLocation, serviceName);

The followingcreate methods may be used:

create(URL wsdlLocation, QName serviceName) Returns a service object for the specified WSDL
document and service name.

create(QName serviceName) Returns a service object for a service with the given name. NoWSDL
document is attached to the service.

♦ Conformance (Service Creation Failure):If a create method fails to create a service object, it MUST
throwWebServiceException. The cause of that exception SHOULD be set to an exception that provides
more information on the cause of the error (e.g. anIOException).

4.1.1.2 Static case

When starting from a WSDL document, a concrete service implementation class MUST be generated as
defined in section 2.7. The generated implementation classwill have two public constructors, one with no
arguments and one with two arguments, representing the wsdllocation (ajava.net.URL) and the service
name (ajavax.xml.namespace.QName) respectively.

When using the no-argument constructor, the WSDL location and service name are implicitly taken from
theWebServiceClient annotation that decorates the generated class.

The following code snippet shows the generated constructors:

1 // Generated Service Class
2
3 @WebServiceClient(name="StockQuoteService",
4 targetNamespace="http://example.com/stocks",
5 wsdlLocation="http://example.com/stocks.wsdl")
6 public class StockQuoteService extends javax.xml.ws.Service {
7 public StockQuoteService() {
8 super(new URL("http://example.com/stocks.wsdl"),
9 new QName("http://example.com/stocks",

10 "StockQuoteService"));
11 }
12
13 public StockQuoteService(String wsdlLocation, QName serviceName) {
14 super(wsdlLocation, serviceName);
15 }
16
17 ...
18 }

50 JAX-WS 2.0 April 19, 2006

4.1. javax.xml.ws.Service

4.1.2 Provider and Service Delegate

Internally, theService class delegates all of its functionality to aServiceDelegate object, which is part
of the SPI used to allow pluggability of implementations.

For this to work, everyService object internally MUST hold a reference to ajavax.xml.ws.spi-
.ServiceDelegate object (see 6.3) to which it delegates every non-static method call. The field used to
hold the reference MUST be private.

The delegate is set when a newService instance is created, which must necessarily happen when the
protected, two-argument constructor defined on theService class is called. The constructor MUST obtain
a Provider instance (see 6.2.2) and call itscreateServiceDelegate method, passing the two arguments
received from its caller and the class object for the instance being created (i.e.this.getClass()).

In order to ensure that the delegate is properly constructed, the staticcreate method defined on the
Service class MUST call the protected constructor to create a new service instance, passing the same
arguments that it received from the application.

The following code snippet shows an implementation of theService API that satisfies the requirements
above:

1
2 public class Service {
3
4 private ServiceDelegate delegate;
5
6 protected Service(java.net.URL wsdlDocumentLocation,
7 QName serviceName) {
8 delegate = Provider.provider()
9 .createServiceDelegate(wsdlDocumentLocation

10 serviceName,
11 this.getClass());
12 }
13
14 public static Service create(java.net.URL wsdlDocumentLocation,
15 QName serviceName) {
16 return new Service(wsdlDocumentLocation, serviceName);
17 }
18
19 // begin delegated methods
20
21 public <T> T getPort(Class<T> serviceEndpointInterface) {
22 return delegate.getPort(serviceEndpointInterface);
23 }
24
25 ...
26 }

4.1.3 Handler Resolver

JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers, that
may be used to extend the capabilities of a JAX-WS runtime system. Chapter 9 describes the handler
framework in detail. AService instance provides access to aHandlerResolver via a pair ofget-
HandlerResolver/setHandlerResolvermethods that may be used to configure a set of handlers on a

April 19, 2006 JAX-WS 2.0 51

Chapter 4. Client APIs

per-service, per-port or per-protocol binding basis.

When aService instance is used to create a proxy or aDispatch instance then the handler resolver
currently registered with the service is used to create the required handler chain. Subsequent changes to the
handler resolver configured for aService instance do not affect the handlers on previously created proxies,
or Dispatch instances.

4.1.4 Executor

Service instances can be configured with ajava.util.concurrent.Executor. The executor will
then be used to invoke any asynchronous callbacks requestedby the application. ThesetExecutor and
getExecutor methods ofService can be used to modify and retrieve the executor configured for a
service.

♦ Conformance (Use of Executor):If an executor object is successfully configured for use by aService via
thesetExecutor method, then subsequent asynchronous callbacks MUST be delivered using the specif-
ied executor. Calls that were outstanding at the time thesetExecutor method was called MAY use the
previously set executor, if any.

♦ Conformance (Default Executor):Lacking an application-specified executor, an implementation MUST
use its own executor, ajava.util.concurrent.ThreadPoolExecutor or analogous mechanism, to
deliver callbacks. An implementation MUST NOT use application-provided threads to deliver callbacks,
e.g. by ”borrowing” them when the application invokes a remote operation.

4.2 javax.xml.ws.BindingProvider

The BindingProvider interface represents a component that provides a protocol binding for use by
clients, it is implemented by proxies and is extended by theDispatch interface. Figure 4.1 illustrates
the class relationships.

TheBindingProvider interface provides methods to obtain theBinding and to manipulate the binding
providers context. Further details onBinding can be found in section 6.1. The following subsection
describes the function and use of context withBindingProvider instances.

4.2.1 Configuration

Additional metadata is often required to control information exchanges, this metadata forms the context of
an exchange.

A BindingProvider instance maintains separate contexts for the request and response phases of a mes-
sage exchange with a service:

Request The contents of the request context are used to initialize the message context (see section 9.4.1)
prior to invoking any handlers (see chapter 9) for the outbound message. Each property within the
request context is copied to the message context with a scopeof HANDLER.

ResponseThe contents of the message context are used to initialize the response context after invoking any
handlers for an inbound message. The response context is first emptied and then each property in the
message context that has a scope ofAPPLICATION is copied to the response context.

52 JAX-WS 2.0 April 19, 2006

4.2. javax.xml.ws.BindingProvider

...

Proxy

...

Dispatch

getBinding():Binding

BindingProvider

�
�

�
���

implements
@

@
@

@@I

extends

...

(Response Context)
Map < String,Object >

...

(Request Context)
Map < String,Object >

...

Binding

�
�

�
�

�
�

�
�
��

has-a

���������:has-a

HHHHHHHHHj

has-a

Figure 4.1: Binding Provider Class Relationships

♦ Conformance (Message context decoupling):Modifications to the request context while previously in-
voked operations are in-progress MUST NOT affect the contents of the message context for the previously
invoked operations.

The request and response contexts are of typejava.util.Map<String,Object> and are obtained using
thegetRequestContext andgetResponseContext methods ofBindingProvider.

In some cases, data from the context may need to accompany information exchanges. When this is required,
protocol bindings or handlers (see chapter 9) are responsible for annotating outbound protocol data units
and extracting metadata from inbound protocol data units.

Note: An example of the latter usage: a handler in a SOAP binding might introduce a header into a SOAP
request message to carry metadata from the request context and might add metadata to the response context
from the contents of a header in a response SOAP message.

4.2.1.1 Standard Properties

Table 4.1 lists a set of standard properties that may be set ona BindingProvider instance and shows
which properties are optional for implementations to support.

Table 4.1: StandardBindingProvider properties.

Name Type Mandatory Description

javax.xml.ws.service.endpoint

Continued on next page

April 19, 2006 JAX-WS 2.0 53

Chapter 4. Client APIs

Table 4.1 – continued from previous page
Name Type Mandatory Description
.address String Y The address of the service endpoint as

a protocol specific URI. The URI
scheme must match the protocol
binding in use.

javax.xml.ws.security.auth

.username String Y Username for HTTP basic
authentication.

.password String Y Password for HTTP basic
authentication.

javax.xml.ws.session

.maintain Boolean Y Used by a client to indicate whether it
is prepared to participate in a service
endpoint initiated session. The default
value isfalse.

javax.xml.ws.soap.http.soapaction

.use Boolean N Controls whether theSOAPAction
HTTP header is used in SOAP/HTTP
requests. Default value isfalse.

.uri String N The value of theSOAPAction HTTP
header if thejavax.xml.ws.soap-
.http.soapaction.use property is
set totrue. Default value is an empty
string.

♦ Conformance (RequiredBindingProvider properties):An implementation MUST support all proper-
ties shown as mandatory in table 4.1.

Note that properties shown as mandatory are not required to be present in any particular context; however,
if present, they must be honored.

♦ Conformance (OptionalBindingProvider properties):An implementation MAY support the proper-
ties shown as optional in table 4.1.

4.2.1.2 Additional Properties

♦ Conformance (Additional context properties):Implementations MAY define additional implementation
specific properties not listed in table 4.1. The java.* and javax.* namespaces are reserved for use by Java
specifications.

Implementation specific properties are discouraged as they limit application portability. Applications and
binding handlers can interact using application specific properties.

4.2.2 Asynchronous Operations

BindingProvider instances may provide asynchronous operation capabilities. When used, asynchronous
operation invocations are decoupled from theBindingProvider instance at invocation time such that

54 JAX-WS 2.0 April 19, 2006

4.2. javax.xml.ws.BindingProvider

the response context is not updated when the operation completes. Instead a separate response context is
made available using theResponse interface, see sections 2.3.4 and 4.3.3 for further detailson the use of
asynchronous methods.

♦ Conformance (Asynchronous response context):The local response context of aBindingProvider in-
stance MUST NOT be updated on completion of an asynchronous operation, instead the response context
MUST be made available via aResponse instance.

When using callback-based asynchronous operations, an implementation MUST use theExecutor set on
the service instance that was used to create the proxy orDispatch instance being used. See 4.1.4 for more
information on configuring theExecutor to be used.

4.2.3 Proxies

Proxies provide access to service endpoint interfaces at runtime without requiring static generation of a stub
class. Seejava.lang.reflect.Proxy for more information on dynamic proxies as supported by the
JDK.

♦ Conformance (Proxy support):An implementation MUST support proxies.

♦ Conformance (ImplementingBindingProvider): An instance of a proxy MUST implementjavax-
.xml.ws.BindingProvider.

A proxy is created using thegetPort methods of aService instance:

T getPort(Class<T> sei) Returns a proxy for the specified SEI, theService instance is responsible
for selecting the port (protocol binding and endpoint address).

T getPort(QName port, Class<T> sei) Returns a proxy for the endpoint specified byport. Note
that the namespace component ofport is the target namespace of the WSDL definitions document.

The serviceEndpointInterface parameter specifies the interface that will be implementedby the
proxy. The service endpoint interface provided by the client needs to conform to the WSDL to Java mapping
rules specified in chapter 2 (WSDL 1.1). Creation of a proxy can fail if the interface doesn’t conform to the
mapping or if any WSDL related metadata is missing from theService instance.

♦ Conformance (Service.getPort failure): If creation of a proxy fails, an implementation MUST throw
javax.xml.ws.WebServiceException. The cause of that exception SHOULD be set to an exception
that provides more information on the cause of the error (e.g. anIOException).

An implementation is not required to fully validate the service endpoint interface provided by the client
against the corresponding WSDL definitions and may choose to implement any validation it does require in
an implementation specific manner (e.g., lazy and eager validation are both acceptable).

4.2.3.1 Example

The following example shows the use of a proxy to invoke a method (getLastTradePrice) on a service
endpoint interface (com.example.StockQuoteProvider). Note that no statically generated stub class is
involved.

April 19, 2006 JAX-WS 2.0 55

Chapter 4. Client APIs

1 javax.xml.ws.Service service = ...;
2 com.example.StockQuoteProvider proxy = service.getPort(portName,
3 com.example.StockQuoteProvider.class)
4 javax.xml.ws.BindingProvider bp = (javax.xml.ws.BindingProvider)proxy;
5 Map<String,Object> context = bp.getRequestContext();
6 context.setProperty("javax.xml.ws.session.maintain", Boolean.TRUE);
7 proxy.getLastTradePrice("ACME");

Lines 1–3 show how the proxy is created. Lines 4–6 perform some configuration of the proxy. Lines 7
invokes a method on the proxy.

4.2.4 Exceptions

All methods of an SEI can throwjavax.xml.ws.WebServiceException and zero or more service
specific exceptions.

♦ Conformance (Remote Exceptions):If an error occurs during a remote operation invocation, an imple-
mention MUST throw a service specific exception if possible. If the error cannot be mapped to a service
specific exception, an implementation MUST throw aProtocolException or one of its subclasses, as
appropriate for the binding in use. See section 6.4.1 for more details.

♦ Conformance (Exceptions During Handler Processing):Exceptions thrown during handler processing on
the client MUST be passed on to the application. If the exception in question is a subclass ofWebService-
Exception then an implementation MUST rethrow it as-is, without any additional wrapping, otherwise it
MUST throw aWebServiceExceptionwhose cause is set to the exception that was thrown during handler
processing.

♦ Conformance (Other Exceptions):For all other errors, i.e. all those that don’t occur as part of a remote
invocation or handler processing, an implementation MUST throw aWebServiceExceptionwhose cause
is the original local exception that was thrown, if any.

For instance, an error in the configuration of a proxy instance may result in aWebServiceException
whose cause is ajava.lang.IllegalArgumentException thrown by some implementation code.

4.3 javax.xml.ws.Dispatch

XML Web Services use XML messages for communication betweenservices and service clients. The higher
level JAX-WS APIs are designed to hide the details of converting between Java method invocations and the
corresponding XML messages, but in some cases operating at the XML message level is desirable. The
Dispatch interface provides support for this mode of interaction.

♦ Conformance (Dispatch support): Implementations MUST support thejavax.xml.ws.Dispatch in-
terface.

Dispatch supports two usage modes, identified by the constantsjavax.xml.ws.Service.Mode.MESSAGE

andjavax.xml.ws.Service.Mode.PAYLOAD respectively:

MessageIn this mode, client applications work directly with protocol-specific message structures. E.g.,
when used with a SOAP protocol binding, a client applicationwould work directly with a SOAP
message.

56 JAX-WS 2.0 April 19, 2006

4.3. javax.xml.ws.Dispatch

Message PayloadIn this mode, client applications work with the payload of messages rather than the
messages themselves. E.g., when used with a SOAP protocol binding, a client application would
work with the contents of the SOAPBody rather than the SOAP message as a whole.

Dispatch is a low level API that requires clients to construct messages or message payloads as XML and
requires an intimate knowledge of the desired message or payload structure.Dispatch is a generic class
that supports input and output of messages or message payloads of any type. Implementations are required
to support the following types of object:

javax.xml.transform.Source Use ofSource objects allows clients to use XML generating and con-
suming APIs directly. Source objects may be used with any protocol binding in either message
or message payload mode. When used with the HTTP binding (seechapter 11) in payload mode,
the HTTP request and response entity bodies must contain XMLdirectly or a MIME wrapper with
an XML root part. Anull value forSource is allowed to make it possible to invoke an HTTP
GET method in the HTTP Binding case. AWebServiceException MUST be thrown when a
Dispatch<Source> is invoked and the Service returns a MIME message. When used in message
mode, if the message is not an XML message aWebServiceException MUST be thrown.

JAXB Objects Use of JAXB allows clients to use JAXB objects generated froman XML Schema to cre-
ate and manipulate XML representations and to use these objects with JAX-WS without requiring
an intermediate XML serialization. JAXB objects may be usedwith any protocol binding in either
message or message payload mode. When used with the HTTP binding (see chapter 11) in payload
mode, the HTTP request and response entity bodies must contain XML directly or a MIME wrap-
per with an XML root part. When used in mssage mode, if the message is not an XML message a
WebServiceException MUST be thrown.

javax.xml.soap.SOAPMessage Use ofSOAPMessage objects allows clients to work with SOAP mes-
sages using the convenience features provided by thejava.xml.soap package. SOAPMessage
objects may only be used withDispatch instances that use the SOAP binding (see chapter 10) in
message mode.

javax.activation.DataSource Use ofDataSource objects allows clients to work with MIME-typed
messages.DataSource objects may only be used withDispatch instances that use the HTTP
binding (see chapter 11) in message mode.

4.3.1 Configuration

Dispatch instances are obtained using thecreateDispatch factory methods of aService instance. The
mode parameter ofcreateDispatch controls whether the newDispatch instance is message or message
payload oriented. Thetype parameter controls the type of object used for messages or message payloads.
Dispatch instances are not thread safe.

Dispatch instances are not required to be dynamically configurable for different protocol bindings; the
WSDL binding from which theDispatch instance is generated contains static information including the
protocol binding and service endpoint address. However, aDispatch instance may support configuration
of certain aspects of its operation and provides methods (inherited fromBindingProvider) to dynamically
query and change the values of properties in its request and response contexts – see section 4.2.1.1 for a list
of standard properties.

April 19, 2006 JAX-WS 2.0 57

Chapter 4. Client APIs

4.3.2 Operation Invocation

A Dispatch instance supports three invocation modes:

Synchronous request response (invoke methods) The method blocks until the remote operation com-
pletes and the results are returned.

Asynchronous request response (invokeAsync methods) The method returns immediately, any results
are provided either through a callback or via a polling object.

One-way (invokeOneWay methods) The method is logically non-blocking, subject to the capabilities of
the underlying protocol, no results are returned.

Callinginvoke on the differentDispatch types defined above with anull value means an empty message
will be sent where allowed by the binding, message mode and the MEP. So for example when using -

• SOAP 1.1 / HTTP binding in payload mode usingnull will send a soap message with an empty body.

• SOAP 1.1 / HTTP binding in message modenull being passed toinvoke is an error condition and
will result in aWebServiceException.

• XML / HTTP binding both in payload and in message modenull being passed toinvoke with the
HTTP POST and PUT operations is an error condition and will result in aWebServiceException.

♦ Conformance (FailedDispatch.invoke): When an operation is invoked using aninvoke method, an
implementation MUST throw aWebServiceException if there is any error in the configuration of the
Dispatch instance or aProtocolException if an error occurs during the remote operation invocation.

♦ Conformance (FailedDispatch.invokeAsync): When an operation is invoked using aninvokeAsync
method, an implementation MUST throw aWebServiceException if there is any error in the conf-
iguration of theDispatch instance. Errors that occur during the invocation are reported when the client
attempts to retrieve the results of the operation.

♦ Conformance (FailedDispatch.invokeOneWay): When an operation is invoked using aninvoke-
OneWay method, an implementation MUST throw aWebServiceException if there is any error in the
configuration of theDispatch instance or if an error is detected1 during the remote operation invocation.

See section 10.4.1 for additional SOAP/HTTP requirements.

4.3.3 Asynchronous Response

Dispatch supports two forms of asynchronous invocation:

Polling TheinvokeAsync method returns aResponse (see below) that may be polled using the methods
inherited fromFuture<T> to determine when the operation has completed and to retrieve the results.

1The invocation is logically non-blocking so detection of errors during operation invocation is dependent on the underlying
protocol in use. For SOAP/HTTP it is possible that certain HTTP level errors may be detected.

58 JAX-WS 2.0 April 19, 2006

4.3. javax.xml.ws.Dispatch

Callback The client supplies anAsyncHandler (see below) and the runtime calls thehandleResponse
method when the results of the operation are available. TheinvokeAsync method returns a wildcard
Future (Future<?>) that may be polled to determine when the operation has completed. The object
returned fromFuture<?>.get() has no standard type. Client code should not attempt to cast the
object to any particular type as this will result in non-portable behavior.

In both cases, errors that occur during the invocation are reported via an exception when the client attempts
to retrieve the results of the operation.

♦ Conformance (Reporting asynchronous errors):If the operation invocation fails, an implementation MUST
throw ajava.util.concurrent.ExecutionException from theResponse.get method.

The cause of anExecutionException is the original exception raised. In the case of aResponse instance
this can only be aWebServiceException or one of its subclasses.

The following interfaces are used to obtain the results of anoperation invocation:

javax.xml.ws.Response A generic interface that is used to group the results of an invocation with
the response context.Response extendsjava.util.concurrent.Future<T> to provide asyn-
chronous result polling capabilities.

javax.xml.ws.AsyncHandler A generic interface that clients implement to receive results in an asyn-
chronous callback. It defines a singlehandleResponse method that has aResponse object as its
argument.

4.3.4 Using JAXB

Service provides acreateDispatch factory method for creatingDispatch instances that contain an
embeddedJAXBContext. Thecontext parameter contains theJAXBContext instance that the created
Dispatch instance will use to marshall and unmarshall messages or message payloads.

♦ Conformance (Marshalling failure):If an error occurs when using the suppliedJAXBContext to mar-
shall a request or unmarshall a response, an implementationMUST throw aWebServiceExceptionwhose
cause is set to the originalJAXBException.

4.3.5 Examples

The following examples demonstrate use ofDispatch methods in the synchronous, asynchronous polling,
and asynchronous callback modes. For ease of reading, errorhandling has been omitted.

4.3.5.1 Synchronous, Payload-Oriented

1 Source reqMsg = ...;
2 Service service = ...;
3 Dispatch<Source> disp = service.createDispatch(portName,
4 Source.class, PAYLOAD);
5 Source resMsg = disp.invoke(reqMsg);

April 19, 2006 JAX-WS 2.0 59

Chapter 4. Client APIs

4.3.5.2 Synchronous, Message-Oriented

1 SOAPMessage soapReqMsg = ...;
2 Service service = ...;
3 Dispatch<SOAPMessage> disp = service.createDispatch(portName,
4 SOAPMessage.class, MESSAGE);
5 SOAPMessage soapResMsg = disp.invoke(soapReqMsg);

4.3.5.3 Synchronous, Payload-Oriented With JAXB Objects

1 JAXBContext jc = JAXBContext.newInstance("primer.po");
2 Unmarshaller u = jc.createUnmarshaller();
3 PurchaseOrder po = (PurchaseOrder)u.unmarshal(
4 new FileInputStream("po.xml"));
5 Service service = ...;
6 Dispatch<Object> disp = service.createDispatch(portName, jc, PAYLOAD);
7 OrderConfirmation conf = (OrderConfirmation)disp.invoke(po);

In the above examplePurchaseOrder andOrderConfirmation are interfaces pre-generated by JAXB
from the schema document ‘primer.po’.

4.3.5.4 Asynchronous, Polling, Message-Oriented

1 SOAPMessage soapReqMsg = ...;
2 Service service = ...;
3 Dispatch<SOAPMessage> disp = service.createDispatch(portName,
4 SOAPMessage.class, MESSAGE);
5 Response<SOAPMessage> res = disp.invokeAsync(soapReqMsg);
6 while (!res.isDone()) {
7 // do something while we wait
8 }
9 SOAPMessage soapResMsg = res.get();

4.3.5.5 Asynchronous, Callback, Payload-Oriented

1 class MyHandler implements AsyncHandler<Source> {
2 ...
3 public void handleResponse(Response<Source> res) {
4 Source resMsg = res.get();
5 // do something with the results
6 }
7 }
8
9 Source reqMsg = ...;

10 Service service = ...;
11 Dispatch<Source> disp = service.createDispatch(portName,
12 Source.class, PAYLOAD);
13 MyHandler handler = new MyHandler();
14 disp.invokeAsync(reqMsg, handler);

60 JAX-WS 2.0 April 19, 2006

4.4. Catalog Facility

4.4 Catalog Facility

JAX-WS mandates support for a standard catalog facility to be used when resolving any Web service docu-
ment that is part of the description of a Web service, specifically WSDL and XML Schema documents.

The facility in question is the OASIS XML Catalogs 1.1 specification [28]. It defines an entity catalog that
handles the following two cases:

• Mapping an external entity’s public identifier and/or system identifier to a URI reference.

• Mapping the URI reference of a resource to another URI reference.

Using the entity catalog, an application can package one or more description and/or schema documents in
jar files, avoiding costly remote accesses, or remap remoteURIs to other, possibly local ones. Since the
catalog is an XML document, a deployer can easily alter it to suit the local environment, unbeknownst to
the application code.

The catalog is assembled by taking into account all accessible resources whose name isMETA-INF/jax-
-ws-catalog.xml. Each resource MUST be a valid entity catalog according to the XML Catalogs 1.1
specification. When running on the Java SE platform, the current context class loader MUST be used to
retrieve all the resources with the specified name. Relative URIs inside a catalog file are relative to the
location of the catalog that contains them.

♦ Conformance (Use of the Catalog):In the process of resolving a URI that points to a WSDL document
or any document reachable from it, a JAX-WS implementation MUST perform a URI resolution for it, as
prescribed by the XML Catalogs 1.1 specification, using thecatalog defined above as its entity catalog.

In particular, every JAX-WS API argument or annotation element whose semantics is that of a WSDL
location URI MUST undergo URI resolution using the catalog facility described in this section.

Although defined in the client API chapter for reasons of ease of exposure, use of the catalog is in no way
restricted to client uses of WSDL location URIs. In particular, resolutions of URIs to WSDL and schema
documents that arise during the publishing of the contract for an endpoint (see 5.2.5) are subject to the
requirements in this section, resulting in catalog-based URI resolutions.

April 19, 2006 JAX-WS 2.0 61

Chapter 4. Client APIs

62 JAX-WS 2.0 April 19, 2006

Chapter 5

Service APIs

This chapter describes requirements on JAX-WS service implementations and standard APIs provided for
their use.

5.1 javax.xml.ws.Provider

JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps mapped from
a WSDL port type, either directly or via the use of annotations. Section 3.4 describes the requirements that
a Java interface must meet to qualify as a JAX-WS SEI. Section2.2 describes the mapping from a WSDL
port type to an equivalent Java SEI.

Java SEIs provide a high level Java-centric abstraction that hides the details of converting between Java
objects and their XML representations for use in XML-based messages. However, in some cases it is
desirable for services to be able to operate at the XML message level. TheProvider interface offers an
alternative to SEIs and may be implemented by services wishing to work at the XML message level.

♦ Conformance (Provider support required):An implementation MUST supportProvider<Source> in
payload mode with all the predefined bindings. It MUST also support Provider<SOAPMessage> in
message mode in conjunction with the predefined SOAP bindings andProvider<javax.activation-
.DataSource> in message mode in conjunction with the predefined HTTP binding.

♦ Conformance (Provider default constructor):A Provider based service endpoint implementation MUST
provide a public default constructor.

A typed Provider interface is one in which the type parameter has been bound toa concrete class, e.g.
Provider<Source>orProvider<SOAPMessage>, as opposed to being left unbound, as inProvider<T>.

♦ Conformance (Provider implementation):A Provider based service endpoint implementation MUST
implement a typedProvider interface.

♦ Conformance (WebServiceProvider annotation):A Provider based service endpoint implementation
MUST carry aWebServiceProvider annotation (see 7.7).

Provider is a low level generic API that requires services to work withmessages or message payloads and
hence requires an intimate knowledge of the desired messageor payload structure. The generic nature of
Provider allows use with a variety of message object types.

April 19, 2006 JAX-WS 2.0 63

Chapter 5. Service APIs

5.1.1 Invocation

A Provider based service instance’sinvoke method is called for each message received for the service.

5.1.1.1 Exceptions

The service runtime is required to catch exceptions thrown by a Provider instance. AProvider instance
may make use of the protocol specific exception handling mechanism as described in section 6.4.1. The
protocol binding is responsible for converting the exception into a protocol specific fault representation and
then invoking the handler chain and dispatching the fault message as appropriate.

5.1.2 Configuration

TheServiceMode annotation is used to configure the messaging mode of aProvider instance. Use of
@ServiceMode(value=MESSAGE) indicates that the provider instance wishes to receive and send entire
protocol messages (e.g. a SOAP message when using the SOAP binding); absence of the annotation or
use of@ServiceMode(value=PAYLOAD) indicates that the provider instance wishes to receive and send
message payloads only (e.g. the contents of a SOAP Body element when using the SOAP binding).

Provider instances MAY use theWebServiceContext facility (see 5.3) to access the message context and
other information about the request currently being served.

The JAX-WS runtime makes certain properties available to aProvider instance that can be used to deter-
mine its configuration. These properties are passed to theProvider instance each time it is invoked using
theMessageContext instance accessible from theWebServiceContext.

5.1.3 Examples

For brevity, error handling is omitted in the following examples.

Simple echo service, reply message is the same as the input me ssage

1 @WebServiceProvider
2 @ServiceMode(value=Service.Mode.MESSAGE)
3 public class MyService implements Provider<SOAPMessage> {
4 public MyService() {
5 }
6
7 public SOAPMessage invoke(SOAPMessage request) {
8 return request;
9 }

10 }

Simple static reply, reply message contains a fixed acknowl egment element

1 @WebServiceProvider
2 @ServiceMode(value=Service.Mode.PAYLOAD)
3 public class MyService implements Provider<Source> {
4 public MyService() {

64 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

5 }
6
7 public Source invoke(Source request) {
8 Source requestPayload = request.getPayload();
9 ...

10 String replyElement = "<n:ack xmlns:n=’...’/>";
11 StreamSource reply = new StreamSource(new StringReader(replyElement));
12 return reply;
13 }
14 }

Using JAXB to read the input message and set the reply

1 @WebServiceProvider
2 @ServiceMode(value=Service.Mode.PAYLOAD)
3 public class MyService implements Provider<Source> {
4 public MyService() {
5 }
6
7 public Source invoke(Source request) {
8 JAXBContent jc = JAXBContext.newInstance(...);
9 Unmarshaller u = jc.createUnmarshaller();

10 Object requestObj = u.unmarshall(request);
11 ...
12 Acknowledgement reply = new Acknowledgement(...);
13 return new JAXBSource(jc, reply);
14 }
15 }

5.2 javax.xml.ws.Endpoint

TheEndpoint class can be used to create and publish Web service endpoints.

An endpoint consists of an object that acts as the Web serviceimplementation (called hereimplementor)
plus some configuration information, e.g. aBinding. Implementor and binding are set when the end-
point is created and cannot be modified later. Their values can be retrieved using thegetImplementor
andgetBinding methods respectively. Other configuration information may be set at any time after the
creation of anEndpoint but before its publication.

5.2.1 Endpoint Usage

Endpoints can be created using the following static methodsonEndpoint:

create(Object implementor) Creates and returns anEndpoint for the specified implementor. If the
implementor specifies a binding using thejavax.xml.ws.BindingType annotation it MUST be
used else a default binding of SOAP 1.1 / HTTP binding MUST be used.

create(String bindingID, Object implementor) Creates and returns anEndpoint for the specif-
ied binding and implementor. If the bindingID isnull and no binding information is specified via
thejavax.xml.ws.BindingType annotation then a default SOAP 1.1 / HTTP binding MUST be
used.

April 19, 2006 JAX-WS 2.0 65

Chapter 5. Service APIs

publish(String address, Object implementor) Creates and publishes anEndpoint for the given
implementor. The binding is chosen by default based on the URL scheme of the provided address
(which must be a URL). If a suitable binding if found, the endpoint is created then published as if the
Endpoint.publish(String address) method had been called. The createdEndpoint is then
returned as the value of the method.

These methods MUST delegate the creation of Endpoint to thejavax.xml.ws.spi.ProviderSPI class
(see 6.2) by calling thecreateEndpoint andcreateAndPublishEndpoint methods respectively.

An implementor object MUST be either an instance of a class annotated with the@WebService annotation
according to the rules in chapter 3 or an instance of a class annotated with theWebServiceProvider
annotation and implementing theProvider interface (see 5.1).

Thepublish(String,Object) method is provided as a shortcut for the common operation of creating
and publishing anEndpoint. The following code provides an example of its use:

1 // assume Test is an endpoint implementation class annotated with @WebService
2 Test test = new Test();
3 Endpoint e = Endpoint.publish("http://localhost:8080/test", test);

♦ Conformance (Endpoint publish(String address, Object implementor) Method):The effect of invoking the
publishmethod on anEndpointMUST be the same as first invoking thecreatemethod with the binding
ID appropriate to the URL scheme used by the address, then invoking thepublish(String address)

method on the resultingendpoint.

♦ Conformance (Default Endpoint Binding):In the absence of a specified binding, if the URL scheme
for the address argument of theEndpoint.publish method is ”http” or ”https” then an implementation
MUST use the SOAP 1.1/HTTP binding (see chapter 10) as the binding for the newly created endpoint.

♦ Conformance (Other Bindings):An implementation MAY support using theEndpoint.publishmethod
with addresses whose URL scheme is neither ”http” nor ”https”.

The success of theEndpoint.publishmethod is conditional to the presence of the appropriate permission
as described in section 5.2.3.

Endpoint implementors MAY use theWebServiceContext facility (see 5.3) to access the message context
and other information about the request currently being served. Injection of theWebServiceContext, if
requested, MUST happen the first time the endpoint is published. After any injections have been performed
and before any requests are dispatched to the implementor, the implementor method which carries ajavax-
.annotation.PostConstruct annotation, if present, MUST be invoked. Such a method MUST satisfy
the requirements for lifecycle methods in JSR-250 [29].

5.2.2 Publishing

An Endpoint is in one of three states: not published (the default), published or stopped. Published end-
points are active and capable of receiving incoming requests and dispatching them to their implementor.
Non published endpoints are inactive. Stopped endpoint were in the published until some time ago, then got
stopped. Stopped endpoints cannot be published again. Publication of anEndpoint can be achieved by
invoking one of the following methods:

publish(String address) Publishes the endpoint at the specified address (a URL). Theaddress MUST
use a URL scheme compatible with the endpoint’s binding.

66 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

publish(Object serverContext) Publishes the endpoint using the specified server context.The
server context MUST contain address information for the resulting endpoint and it MUST be compat-
ible with the endpoint’s binding.

♦ Conformance (Publishing over HTTP):If the Binding for anEndpoint is a SOAP (see 10) or HTTP
(see 11) binding, then an implementation MUST support publishing theEndpoint to a URL whose scheme
is either ”http” or ”https”.

The WSDL contract for an endpoint is created dynamically based on the annotations on the implementor
class, theBinding in use and the set of metadata documents specified on the endpoint (see 5.2.4).

♦ Conformance (WSDL Publishing):An Endpoint that uses the SOAP 1.1/HTTP binding (see 10) MUST
make its contract available as a WSDL 1.1 document at the publishing address suffixed with ”?WSDL” or
”?wsdl”.

An Endpoint that uses any other binding defined in this specification inconjunction with the HTTP trans-
port SHOULD make its contract available using the same convention. It is RECOMMENDED that an
implementation provide a way to access the contract for an endpoint even when the latter is published over
a transport other than HTTP.

The success of the twoEndpoint.publish methods described above is conditional to the presence of the
appropriate permission as described in section 5.2.3.

Applications that wish to modify the configuration information (e.g. the metadata) for anEndpoint must
make sure the latter is in the not-published state. Althoughthe various setter methods onEndpoint must
always store their arguments so that they can be retrieved bya later invocation of a getter, the changes they
entail may not be reflected on the endpoint until the next timeit is published. In other words, the effects of
configuration changes on a currently published endpoint are undefined.

Thestop method can be used to stop publishing an endpoint. A stopped endpoint may not be restarted. It
is an error to invoke apublish method on a stopped endpoint. After thestop method returns, the runtime
MUST NOT dispatch any further invocations to the endpoint’simplementor.

An Endpoint will be typically invoked to serve concurrent requests, so its implementor should be written
so as to support multiple threads. Thesynchronized keyword may be used as usual to control access to
critical sections of code. For finer control over the threads used to dispatch incoming requests, an application
can directly set the executor to be used, as described in section 5.2.7.

5.2.2.1 Example

The following example shows the use of thepublish(Object) method using a hypothetical HTTP server
API that includes theHttpServer andHttpContext classes.

1 // assume Test is an endpoint implementation class annotated with @WebService
2 Test test = new Test();
3 HttpServer server = HttpServer.create(new InetSocketAddress(8080),10);
4 server.setExecutor(Executor.newFixedThreadPool(10));
5 server.start();
6 HttpContext context = server.createContext("/test");
7 Endpoint endpoint = Endpoint.create(SOAPBinding.SOAP11HTTP_BINDING, test);
8 endpoint.publish(context);

Note that the specified server context uses its own executormechanism. At runtime then, any other executor
set on theEndpoint instance would be ignored by the JAX-WS implementation.

April 19, 2006 JAX-WS 2.0 67

Chapter 5. Service APIs

5.2.3 Publishing Permission

For security reasons, administrators may want to restrict the ability of applications to publish Web ser-
vice endpoints. To this end, JAX-WS 2.0 defines a new permission class,javax.xml.ws.WebService-
Permission, and one named permission,publishEndpoint.

♦ Conformance (CheckingpublishEndpoint Permission):When any of thepublish methods defined
by theEndpoint class are invoked, an implementation MUST check whether aSecurityManager is
installed with the application. If it is, implementations MUST verify that the application has theWeb-
ServicePermission identified by the target namepublishEndpoint before proceeding. If the per-
mission is not granted, implementations MUST NOT publish the endpoint and they MUST throw ajava-
.lang.SecurityException.

5.2.4 Endpoint Metadata

A set of metadata documents can be associated with anEndpoint by means of thesetMetadata-
(List<Source>) method. By setting the metadata of anEndpoint, an application can bypass the auto-
matic generation of the endpoint’s contract and specify thedesired contract directly. This way it is possible,
e.g., to make sure that the WSDL or XML Schema document that ispublished contains information that
cannot be represented using built-in Java annotations (see7).

♦ Conformance (Required Metadata Types):An implementation MUST support WSDL 1.1 and XML Schema
1.0 documents as metadata.

♦ Conformance (Unknown Metadata):An implementation MUST ignore metadata documents whose type
it does not recognize.

When specifying a list of documents as metadata, an application may need to establish references between
them. For instance, a WSDL document may import one or more XMLSchema documents. In order to do
so, the application MUST use thesystemId property of thejavax.xml.transform.Source class by
setting its value to an absolute URI that uniquely identifies it among all supplied metadata documents, then
using the given URI in the appropriate construct (e.g.wsdl:import or xsd:import).

5.2.5 Determining the Contract for an Endpoint

This section details how the annotations on the endpoint implementation class and the metadata for an
endpoint instance are used at publishing time to create a contract for the endpoint.

Both theWebService andWebServiceProvider annotations define awsdlLocation annotation ele-
ment which can be used to point to the desired WSDL document for the endpoint. If such an annotation
element is present on the endpoint implementation class andhas a value other than the default one (i.e.
it is not the empty string), then a JAX-WS implementation MUST use the document referred to from the
wsdlLocation annotation element to determine the contract, according tothe rules in section 5.2.5.3.

In addition to the case in which theEndpoint API is explicitly used, the requirements in this section are
also applicable to the publishing of an endpoint via declarative means, e.g. in a servlet container. In this
case, there may not be an equivalent for the notion of metadata as described in 5.2.4. In such an occurrence,
the rules in this section MUST be applied using an empty set ofmetadata documents as the metadata for the
endpoint.

68 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

In the context of the Java EE Platform, JSR-109 [14] defines deployment descriptor elements that may be
used to override the value of thewsdlLocation annotation element. Please refer to that specification for
more details.

As we specify additional rules to be used in determining the contract for an endpoint, we distinguish two
cases: that of a SEI-based endpoint (i.e. an endpoint that isannotated with aWebService annotation) and
that of a Provider-based endpoint.

5.2.5.1 SEI-based Endpoints

For publishing to succeed, a SEI-based endpoint MUST have anassociated contract.

If the wsdlLocation annotation element is the empty string, then a JAX-WS implementation must obey
the following rules, depending on the binding used by the endpoint:

SOAP 1.1/HTTP Binding A JAX-WS implementation MUST generate a WSDL description for the end-
point based on the rules in section 5.2.5.3 below.

SOAP 1.2/HTTP Binding A JAX-WS implementation MUST NOT generate a WSDL description for the
endpoint.

HTTP Binding A JAX-WS implementation MUST NOT generate a WSDL description for the endpoint.

Any Implementation-Specific Binding A JAX-WS implementation MAY generate a WSDL description
for the endpoint.

Note: This requirements guarantee that future versions of this specification may mandate support for ad-
ditional WSDL binding in conjunction with the predefined binding identifiers without negatively affecting
existing applications.

A generated contract MUST follow the rules in chapter 3 and those in the JAXB specification [10].

5.2.5.2 Provider-based Endpoints

Provider-based endpoints SHOULD have a non-emptywsdlLocation pointing to a valid WSDL descrip-
tion of the endpoint.

If the wsdlLocation annotation element is the empty string, then a JAX-WS implementation MUST NOT
generate a WSDL description for the endpoint.

5.2.5.3 Use of @WebService(wsdlLocation) and Metadata

A WSDL document contains two different kinds of information: abstract information (i.e. portTypes and
any schema-related information) which affects the format of the messages and the data being exchanged,
and binding-related one (i.e. bindings and ports) which affects the choice of protocol and transport as well as
the on-the-wire format of the messages. Annotations (see 7)are provided to capture the former aspects but
not the latter. (The@SOAPBinding annotation is a bit of a hybrid, because it captures the signature-related
aspects of thesoap:binding binding extension in WSDL 1.1.)

At runtime, annotations must be followed for all the abstract aspects of an interaction, but binding informa-
tion has to come from somewhere else. Although the choice of binding is made at the time an endpoint is

April 19, 2006 JAX-WS 2.0 69

Chapter 5. Service APIs

created, this specification does not attempt to capture allpossible binding properties in its APIs, since the
extensibility of WSDL would make it a futile exercise. Rather, when an endpoint is published, a description
for it, if present, is consulted to determine binding information, using thewsdl:service andwsdl:port
qualified names as a key.

In terms of priority, the description specified using thewsdlLocation annotation element, if present,
comes first, and the metadata documents are secondary. In the absence of a non-empty, non-defaultwsdlLocation

annotation element, the metadata documents are consulted to identify as many description components as
possible that can be reused when producing the contract for the endpoint.

There are some restrictions on the packaging of the description and any associated metadata documents.
The goal of these restrictions is to make it possible to publish an endpoint without forcing a JAX-WS
implementation to retrieve, store and patch multiple documents from potentially remote sites.

The value of thewsdlLocation annotation element on an endpoint implementation class, ifany, MUST
be a relative URL. The document it points to MUST be packaged with the application. Moreover, it MUST
follow the requirements in section 5.2.5.4 below (”Application-specified Service”).

In the Java SE platform, relative URLs are treated as resources. When running on the Java EE platform, the
dispositions in the JSR-109 specification apply.

For ease of identification, let’s call this document the ”root description document”, to distinguish it from
any WSDL documents it might import.

At publishing time, a JAX-WS implementation MUST patch the endpoint address in the root description
document to match the actual address the endpoint is deployed at.

In order to state the requirements for patching the locations of anywsdl:import-ed orxsd:import-ed
documents, let’s define a document as beinglocal if and only if

1. it is the root description document, or

2. it is reachable from a local document via an import statement whose location is either a relative URL
or an absolute URL for which there is a corresponding metadata document (i.e. aSource object
which is a member of the list of metadata documents and whosesystemId property is equal to the
URL in question).

A JAX-WS implementation MUST patch the location attributesof all wsdl:import andxsd:import
statement in local documents that point to local documents.An implementation MUST NOT patch any
other location attributes.

Please note that, although the catalog facility (see 4.4) isused to resolve any absolute URLs encoun-
tered while processing the root description document or anydocuments transitively reachable from it via
wsdl:import andxsd:import statements, those absolute URLs will not be rewritten when the importing
document is published, since documents resolved via the catalog are not considered local, even if the catalog
maps them to resources packaged with the application.

In what follows, for better readability, the term ”metadatadocument” should be interpreted as also covering
the description document pointed to by thewsdlLocation annotation element (if any), while keeping in
mind the processing rules in the preceding paragraphs.

As a guideline, the generated contract must reuse as much as possible the set of metadata documents pro-
vided by the application. In order to simplify an implementor’s task, this specification requires that only a
small number of well-defined scenarios in which the application provides metadata documents be supported.

70 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

Implementations MAY support other use cases, but they MUST follow the general rule that any application-
provided metadata element takes priority over an implementation-generated one, with the exception of the
overriding of a port address.

For instance, if the application-provided metadata contains a definition for portTypefoo that in no case
should the JAX-WS implementation create its ownfoo portType to replace the one provided by the applica-
tion in the final contract for the endpoint.

The exception to using a metadata document as supplied by theapplication without any modifications is
the address of thewsdl:port for the endpoint, which MUST be overridden so as to match the address
specified as an argument to thepublish method or the one implicit in a server context.

When publishing the main WSDL document for an endpoint, an implementation MUST ensure that all refer-
ences between documents are correct and resolvable. This may require remapping the metadata documents
to URLs different from those set as theirsystemId property. The renaming MUST be consistent, in that the
”imports” and ”includes” relationships existing between documents when the metadata was supplied to the
endpoint MUST be respected at publishing time. Moreover, the same metadata document SHOULD NOT
be published at multiple, different URLs.

When resolving URI references to other documents when processing metadata documents or any of the
documents they may transitively reference, a JAX-WS implementation MUST use the catalog facility def-
ined in section 4.4, except when there is a metadata documentwhose system id matches the URI in question.
In other words, metadata documents have priority over catalog-based mappings.

The scenarios which are required to be supported are the following:

5.2.5.4 Application-specified Service

One of the metadata documents, sayD, contains a definition for a WSDL service whose qualified name
, sayS, matches that specified by the endpoint being published. Inthis case, a JAX-WS implementation
MUST useD as the service description. No further generation of contract-related artifacts may occur.
The implementation MUST also override the port address inD and thelocation andschemaLocation
attributes as detailed in the preceding paragraphs. It is anerror if more than one metadata document contains
a definition for the sought-after serviceS.

5.2.5.5 Application-specified PortType

No metadata document contains a definition for the sought-after serviceS, but a metadata document, say
D, contains a definition for the WSDL portType whose qualified name, sayP, matches that specified by the
endpoint being published. In this case, a JAX-WS implementation MUST create a new description forS,
including an appropriate WSDL binding element referencingportTypeP. The metadata documentD MUST
be imported/included so that the published contract uses the definition ofP provided byD. No schema gen-
eration occurs,asP is assumed to embed or import schema definitions for all the types/elements it requires.
Like in the previous case, the implementation MUST overrideanylocation andschemaLocation at-
tributes. It is an error if more than one metadata document contains a definition for the sought-after portType
P.

April 19, 2006 JAX-WS 2.0 71

Chapter 5. Service APIs

Table 5.1: StandardEndpoint properties.
Name Type Description

javax.xml.ws.wsdl

.service QName Specifies the qualified name of the service.

.port QName Specifies the qualified name of the port.

5.2.5.6 Application-specified Schema or No Metadata

No metadata document contains a definition for the sought-after serviceS and portTypeP. In this case, a
JAX-WS implementation MUST generate a complete WSDL forS. When it comes to generating a schema
for a certain target namespace, sayT, the implementation MUST reuse the schema forT among the avail-
able metadata documents, if any. Like in the preceding case,the implementation MUST override any
schemaLocation attributes. It is an error if more than one schema documents specified as metadata
for the endpoint attempt to define components in a namespaceT used by the endpoint.

Note: The three scenarios described above cover several applicative use cases. The first one represents an
application that has full control over all aspects of the contract. The JAX-WS runtime just uses what the
application provided, with a minimum of adjustments to ensure consistency. The second one corresponds
to an application that defines all abstract aspects of the WSDL, i.e. portType(s) and schema(s), leaving
up to the JAX-WS runtime to generate the concrete portions ofthe contract. Finally, the third case rep-
resents an application that uses one or more well-known schema(s), possibly taking advantage of lots of
facets/constraints that JAXB cannot capture, and wants to reuse it as-is, leaving all the WSDL-specific as-
pects of the contract up to the runtime. This use case also covers an application that does not specify any
metadata, leaving WSDL and schema generation up to the JAX-WS (and JAXB) implementation.

5.2.6 Endpoint Properties

An Endpoint has an associated set of properties that may be read and written using thegetProperties
andsetProperties methods respectively.

Table 5.1 lists the set of standardEndpoint properties.

When present, the WSDL-related properties override the values specified using theWebService andWeb-
ServiceProvider annotations. This functionality is most useful with provider objects (see section 7.7),
since the latter are naturally more suited to a more dynamic usage. For instance, an application that publishes
a provider endpoint can decide at runtime which web service to impersonate by using a combination of
metadata documents and the properties described in this section.

5.2.7 Executor

Endpoint instances can be configured with ajava.util.concurrent.Executor. The executor will
then be used to dispatch any incoming requests to the application. ThesetExecutor andgetExecutor
methods ofEndpoint can be used to modify and retrieve the executor configured for a service.

♦ Conformance (Use of Executor):If an executor object is successfully set on anEndpoint via theset-
Executor method, then an implementation MUST use it to dispatch incoming requests upon publication of
theEndpoint by means of thepublish(String address) method. If publishing is carried out using
thepublish(Object serverContext)) method, an implementation MAY use the specified executor or
another one specific to the server context being used.

72 JAX-WS 2.0 April 19, 2006

5.3. javax.xml.ws.WebServiceContext

♦ Conformance (Default Executor):If an executor has not been set on anEndpoint, an implementation
MUST use its own executor, ajava.util.concurrent.ThreadPoolExecutor or analogous mecha-
nism, to dispatch incoming requests.

5.3 javax.xml.ws.WebServiceContext

The javax.xml.ws.WebServiceContext interface makes it possible for an endpoint implementation
object and potentially any other objects that share its execution context to access information pertaining to
the request being served.

The result of invoking any methods on theWebServiceContext of a component outside the invocation
of one of its web service methods is undefined. An implementation SHOULD throw ajava.lang-
.IllegalStateException if it detects such a usage.

The WebServiceContext is treated as an injectable resource that can be set at the time an endpoint is
initialized. TheWebServiceContext object will then use thread-local information to return thecorrect
information regardless of how many threads are concurrently being used to serve requests addressed to the
same endpoint object.

In Java SE, the resource injection denoted by theWebServiceContext annotation is REQUIRED to take
place only when the annotated class is an endpoint implementation class.

The following code shows a simple endpoint implementation class which requests the injection of its
WebServiceContext:

1 @WebService
2 public class Test {
3 @Resource
4 private WebServiceContext context;
5
6 public String reverse(String inputString) { ... }
7 }

Thejavax.annotation.Resource annotation defined by JSR-250 [29] is used to request injection of
the WebServiceContext. The following constraints apply to the annotation elements of aResource
annotation used to inject aWebServiceContext:

• The type element MUST be eitherjava.lang.Object (the default) orjavax.xml.ws.Web-
ServiceContext. If the former, then the resource MUST be injected into a field or a method. In
this case, the type of the field or the type of the JavaBeans property defined by the method MUST be
javax.xml.ws.WebServiceContext.

• TheauthenticationType, shareable elements, if they appear, MUST have their respective de-
fault values.

The above restriction ontype guarantees that a resource type ofWebServiceContext is either explicitly
stated or can be inferred from the annotated field/method declaration. Moreover, the field/method type must
be assignable from the type described by the annotation’stype element.

When running on the Java SE platform, thename andmappedName elements are ignored. As a consequence,
on Java SE there is no point in declaring a resource of typeWebServiceContext on the endpoint class
itself (instead of one of its fields/methods), since it won’t be accessible at runtime via JNDI.

April 19, 2006 JAX-WS 2.0 73

Chapter 5. Service APIs

When running on the Java EE 5 platform, resources of typeWebServiceContext are treated just like all
other injectable resources there and are subject to the constraints prescribed by the platform specification
[30].

Note: When using method-based injection, it is recommended that the method be declared as non-public,
otherwise it will be exposed as a web service operation. Alternatively, the method can be marked with the
@WebMethod(exclude=true) annotation to ensure it will not be part of the generated portType for the
service.

5.3.1 MessageContext

The message context made available to endpoint instances via theWebServiceContext acts as a restricted
window on to theMessageContext of the inbound message following handler execution (see chapter 9).
The restrictions are as follows:

• Only properties whose scope isAPPLICATION are visible using aMessageContext obtained from
aWebServiceContext; theget method returnsnull for properties withHANDLER scope, theSet
returned bykeySet only includes properties withAPPLICATION scope.

• New properties set in the context are set in the underlyingMessageContext with APPLICATION

scope.

• An attempt to set the value of property whose scope isHANDLER in the underlyingMessageContext
results in anIllegalArgumentException being thrown.

• Only properties whose scope isAPPLICATION can be removed using the context. An attempt to re-
move a property whose scope isHANDLER in the underlyingMessageContext results in anIllegal-
ArgumentException being thrown.

• TheMap.putAll method can be used to insert multiple properties at once. Each property is inserted
individually, each insert operation being carried out as ifenclosed by a try/catch block that traps any
IllegalArgumentException. Consequently,putAll is not atomic: it silently ignores properties
whose scope isHANDLER and it never throws anIllegalArgumentException.

The MessageContext is used to store handlers information between request and response phases of a
message exchange pattern, restricting access to context properties in this way ensures that endpoint imple-
mentations can only access properties intended for their use.

74 JAX-WS 2.0 April 19, 2006

Chapter 6

Core APIs

This chapter describes the standard core APIs that may be used by both client and server side applications.

6.1 javax.xml.ws.Binding

Thejavax.xml.ws.Binding interface acts as a base interface for JAX-WS protocol bindings. Bindings
to specific protocols extendBinding and may add methods to configure specific aspects of that protocol
binding’s operation. Chapter 10 describes the JAX-WS SOAP binding; chapter 11 describes the JAX-WS
XML/HTTP binding.

Applications obtain aBinding instance from aBindingProvider (a proxy orDispatch instance) or
from anEndpoint using thegetBinding method (see sections 4.2, 5.2).

A concrete binding is identified by abinding id, i.e. a URI. This specification defines a number of stan-
dard bindings and their corresponding identifiers (see chapters 10 and 11). Implementations MAY support
additional bindings. In order to minimize conflicts, the identifier for an implementation-specific binding
SHOULD use a URI scheme that includes a domain name or equivalent, e.g. the ”http” URI scheme. Such
identifiers SHOULD include a domain name controlled by the implementation’s vendor.

Binding provides methods to manipulate the handler chain configured on an instance (see section 9.2.1).

♦ Conformance (Read-only handler chains):An implementation MAY prevent changes to handler chains
configured by some other means (e.g. via a deployment descriptor) by throwingUnsupportedOperation-
Exception from thesetHandlerChain method ofBinding

6.2 javax.xml.ws.spi.Provider

Provider is an abstract service provider interface (SPI) factory class that provides various methods for the
creation ofEndpoint instances andServiceDelegate instances. These methods are designed for use by
other JAX-WS API classes, such asService (see 4.1) andEndpoint (see 5.2) and are not intended to be
called directly by applications.

TheProvider SPI allows an application to use a different JAX-WS implementation from the one bundled
with the platform without any code changes.

♦ Conformance (Concretejavax.xml.ws.spi.Provider required): An implementation MUST provide

April 19, 2006 JAX-WS 2.0 75

Chapter 6. Core APIs

a concrete class that extendsjavax.xml.ws.spi.Provider. Such a class MUST have a public construc-
tor which takes no arguments.

6.2.1 Configuration

TheProvider implementation class is determined using the following algorithm. The steps listed below
are performed in sequence. At each step, at most one candidate implementation class name will be produced.
The implementation will then attempt to load the class with the given class name using the current context
class loader or, missing one, thejava.lang.Class.forName(String)method. As soon as a step results
in an implementation class being successfully loaded, the algorithm terminates.

1. If a resource with the name ofMETA-INF/services/javax.xml.ws.spi.Provider exists, then
its first line, if present, is used as the UTF-8 encoded name of the implementation class.

2. If the${java.home}/lib/jaxws.properties file exists and it is readable by thejava.util-
.Properties.load(InputStream) method and it contains an entry whose key isjavax.xml-

.ws.spi.Provider, then the value of that entry is used as the name of the implementation class.

3. If a system property with the namejavax.xml.ws.spi.Provider is defined, then its value is used
as the name of the implementation class.

4. Finally, a default implementation class name is used.

6.2.2 Creating Endpoint Objects

Endpoints can be created using the following methods onProvider:

createEndpoint(String bindingID, Object implementor) Creates and returns anEndpoint
for the specified binding and implementor.

createAndPublishEndpoint(String address, Object implementor) Creates and publishes an
Endpoint for the given implementor. The binding is chosen by default based on the URL scheme
of the provided address (which must be a URL). If a suitable binding if found, the endpoint is cre-
ated then published as if theEndpoint.publish(String address)method had been called. The
createdEndpoint is then returned as the value of the method.

An implementor object MUST be either:

• an instance of a SEI-based endpoint class, i.e. a class annotated with the@WebService annotation
according to the rules in chapter 3, or

• an instance of a provider class, i.e. a class implementing theProvider interface and annotated with
theWebServiceProvider annotation according to the rules in 5.1.

ThecreateAndPublishEndpoint(String,Object)method is provided as a shortcut for the common
operation of creating and publishing anEndpoint. It corresponds to the staticpublish method defined
on theEndpoint class, see 5.2.1.

♦ Conformance (Provider createAndPublishEndpoint Method): The effect of invoking thecreateAnd-
PublishEndpoint method on aProvider MUST be the same as first invoking thecreateEndpoint
method with the binding ID appropriate to the URL scheme usedby the address, then invoking thepublish-
(String address) method on the resultingendpoint.

76 JAX-WS 2.0 April 19, 2006

6.3. javax.xml.ws.spi.ServiceDelegate

6.2.3 Creating ServiceDelegate Objects

javax.xml.ws.spi.ServiceDelegate 6.3 can be created using the following method onProvider:

createServiceDelegate(URL wsdlDocumentLocation, QName serviceName, Class serviceClass)

Creates and returns aServiceDelegate for the specified service. When starting from WSDL the
serviceClass will be the generated service class as described in section 2.7. In the dynamic case where
there is no service class generated it will bejavax.xml.ws.Service. The serviceClass is used by
theServiceDelegate to get access to the annotations.

6.3 javax.xml.ws.spi.ServiceDelegate

Thejavax.xml.ws.spi.ServiceDelegate class is an abstract class that implementations MUST pro-
vide. This is the class thatjavax.xml.ws.Service 4.1 class delegates all methods, except the static
create methods to. ServiceDelegate is defined as an abstract classfor future extensibility purpose.

♦ Conformance (Concretejavax.xml.ws.spi.ServiceDelegate required): An implementation MUST
provide a concrete class that extendsjavax.xml.ws.spi.ServiceDelegate.

6.4 Exceptions

The following standard exceptions are defined by JAX-WS.

javax.xml.ws.WebServiceException A runtime exception that is thrown by methods in JAX-WS
APIs when errors occur during local processing.

javax.xml.ws.ProtocolException A base class for exceptions related to a specific protocol binding.
Subclasses are used to communicate protocol level fault information to clients and may be used by a
service implementation to control the protocol specific fault representation.

javax.xml.ws.soap.SOAPFaultException A subclass ofProtocolException, may be used to
carry SOAP specific information.

javax.xml.ws.http.HTTPException A subclass ofProtocolException, may be used to carry HTTP
specific information.

Editors Note 6.1 A future version of this specification may introduce a new exception class to distinguish
errors due to client misconfiguration or inappropriate parameters being passed to an API from errors that
were generated locally on the sender node as part of the invocation process (e.g. a broken connection or
an unresolvable server name). Currently, both kinds of errors are mapped to WebServiceException, but the
latter kind would be more usefully mapped to its own exception type, much like ProtocolException is.

6.4.1 Protocol Specific Exception Handling

♦ Conformance (Protocol specific fault generation):When throwing an exception as the result of a pro-
tocol level fault, an implementation MUST ensure that the exception is an instance of the appropriate
ProtocolException subclass. For SOAP the appropriateProtocolException subclass isSOAP-
FaultException, for XML/HTTP is is HTTPException.

April 19, 2006 JAX-WS 2.0 77

Chapter 6. Core APIs

♦ Conformance (Protocol specific fault consumption):When an implementation catches an exception thrown
by a service endpoint implementation and the cause of that exception is an instance of the appropriate
ProtocolException subclass for the protocol in use, an implementation MUST reflect the information
contained in theProtocolException subclass within the generated protocol level fault.

6.4.1.1 Client Side Example

1 try {
2 response = dispatch.invoke(request);
3 }
4 catch (SOAPFaultException e) {
5 QName soapFaultCode = e.getFault().getFaultCodeAsQName();
6 ...
7 }

6.4.1.2 Server Side Example

1 public void endpointOperation() {
2 ...
3 if (someProblem) {
4 SOAPFault fault = soapBinding.getSOAPFactory().createFault(
5 faultcode, faultstring, faultactor, detail);
6 throw new SOAPFaultException(fault);
7 }
8 ...
9 }

6.4.2 One-way Operations

♦ Conformance (One-way operations):When sending a one-way message, implementations MUST throw
aWebServiceException if any error is detected when sending the message.

78 JAX-WS 2.0 April 19, 2006

Chapter 7

Annotations

This chapter describes the annotations used by JAX-WS.

For simplicity, when describing an annotation we use the term “property” in lieu of the more correct “an-
notation elements”. Also, for each property we list the default value, which is the default as it appears in
the declaration of the annotation type. Often properties have logical defaults which are computed based on
contextual information and, for this reason, cannot be captured using the annotation element default facility
built into the language. In this case, the text describes what the logical default is and how it is computed.

JAX-WS 2.0 uses annotations extensively. For an annotationto be correct, besides being syntactically
correct, e.g. placed on a program element of the appropriatetype, it must obey a set of constraints detailed
in this specification. For annotations defined by JSR-181,the annotation in question must also obey the
constraints in the relevant specification (see [13]).

♦ Conformance (Correctness of annotations):An implementation MUST check at runtime that the annota-
tions pertaining to a method being invoked, either on the client or on the server, as well as any containing
program elements (i.e. classes, packages) is in conformance with the specification for that annotation

♦ Conformance (Handling incorrect annotations):If an incorrect or inconsistent annotation is detected:

• In a client setting, an implementation MUST NOT invoke the remote operation being invoked, if any.
Instead, it MUST throw aWebServiceException, setting its cause to an exception approximating
the cause of the error (e.g. anIllegalArgumentException or aClassNotFoundException).

• In a server setting, annotation, an implementation MUST NOT dispatch to an endpoint implementa-
tion object. Rather, it MUST generate a fault appropriate tothe binding in use.

An implementation may check for correctness in a lazy way, atthe time a method is invoked or a request
is about to be dispatched to an endpoint, or more aggressively, e.g. when creating a proxy. In a container
environment, an implementation may perform any correctness checks at deployment time.

7.1 javax.xml.ws.ServiceMode

TheServiceMode annotation is used to specify the mode for a provider class, i.e. whether a provider wants
to have access to protocol message payloads (e.g. a SOAP body) or the entire protocol messages (e.g. a
SOAP envelope).

April 19, 2006 JAX-WS 2.0 79

Chapter 7. Annotations

Table 7.1:ServiceMode properties.

Property Description Default
value The service mode, one of

javax.xml.ws.Service.Mode. MESSAGE or
javax.xml.ws.Service.Mode.PAYLOAD.
MESSAGE means that the whole protocol
message will be handed to the provider
instance, PAYLOAD that only the payload of
the protocol message will be handed to the
provider instance.

javax.xml.ws-
.Service.Mode-
.PAYLOAD

TheServiceMode annotation type is marked@Inherited, so the annotation will be inherited from the
superclass.

7.2 javax.xml.ws.WebFault

TheWebFault annotation is used when mapping WSDL faults to Java exceptions, see section 2.5. It is used
to capture the name of the fault element used when marshalling the JAXB type generated from the global
element referenced by the WSDL fault message. It can also be used to customize the mapping of service
specific exceptions to WSDL faults.

Table 7.2:WebFault properties.

Property Description Default
name The local name of the element ””
targetNamespace The namespace name of the element ””
faultBean The fully qualified name of the fault bean

class
””

7.3 javax.xml.ws.RequestWrapper

TheRequestWrapper annotation is applied to the methods of an SEI. It is used to capture the JAXB gen-
erated request wrapper bean and the element name and namespace for marshalling / unmarshalling the bean.
The default value oflocalName element is theoperationName as defined inWebMethod annotation and
the default value for thetargetNamespace element is the target namespace of the SEI. When starting from
Java, this annotation is used to resolve overloading conflicts in document literal mode. Only theclassName
element is required in this case.

Table 7.3:RequestWrapper properties.

Property Description Default
localName The local name of the element ””
targetNamespace The namespace name of the element ””
className The name of the wrapper class ””

80 JAX-WS 2.0 April 19, 2006

7.6. javax.xml.ws.WebEndpoint

7.4 javax.xml.ws.ResponseWrapper

The ResponseWrapper annotation is applied to the methods of an SEI. It is used to capture the JAXB
generated response wrapper bean and the element name and namespace for marshalling / unmarshalling the
bean. The default value of thelocalName element is theoperationName as defined in theWebMethod
appended with ”Response” and the default value of thetargetNamespace element is the target namespace
of the SEI. When starting from Java, this annotation is used to resolve overloading conflicts in document
literal mode. Only theclassName element is required in this case.

Table 7.4:ResponseWrapper properties.

Property Description Default
localName The local name of the element ””
targetNamespace The namespace name of the element ””
className The name of the wrapper class ””

7.5 javax.xml.ws.WebServiceClient

TheWebServiceClient annotation is specified on a generated service class (see 2.7). It is used to asso-
ciate a class with a specific Web service, identify by a URL toa WSDL document and the qualified name
of awsdl:service element.

Table 7.5:WebServiceClient properties.

Property Description Default
name The local name of the service ””
targetNamespace The namespace name of the service ””
wsdlLocation The URL for the WSDL description of the

service
””

When resolving the URI specified as thewsdlLocation element or any document it may transitively
reference, a JAX-WS implementation MUST use the catalog facility defined in section 4.4.

7.6 javax.xml.ws.WebEndpoint

The WebEndpoint annotation is specified on thegetPortName() methods of a generated service class
(see 2.7). It is used to associate a get method with a specificwsdl:port, identified by its local name (a
NCName).

Table 7.6:WebEndpoint properties.

Property Description Default
name The local name of the port ””

April 19, 2006 JAX-WS 2.0 81

Chapter 7. Annotations

7.6.1 Example

The following shows a WSDL extract and the resulting generated service class.

1 <!-- WSDL extract -->
2 <wsdl:service name="StockQuoteService">
3 <wsdl:port name="StockQuoteHTTPPort" binding="StockQuoteHTTPBinding"/>
4 <wsdl:port name="StockQuoteSMTPPort" binding="StockQuoteSMTPBinding"/>
5 </wsdl:service>
6
7 // Generated Service Interface
8 @WebServiceClient(name="StockQuoteService",
9 targetNamespace="...",

10 wsdlLocation="...")
11 public class StockQuoteService extends javax.xml.ws.Service {
12 public StockQuoteService() {
13 super(wsdlLocation_fromAnnotation, serviceName_fromAnnotation);
14 }
15
16 public StockQuoteService(String wsdlLocation, QName serviceName) {
17
18 }
19 @WebEndpoint(name="StockQuoteHTTPPort")
20 public StockQuoteProvider getStockQuoteHTTPPort() {
21 return (StockQuoteProvider)super.gePort(portName, StockQuoteProvider.class);
22 }
23
24 @WebEndpoint(name="StockQuoteSMTPPort")
25 public StockQuoteProvider getStockQuoteSMTPPort() {
26 return (StockQuoteProvider)super.getPort(portName, StockQuoteProvider.class);
27 }
28 }

7.7 javax.xml.ws.WebServiceProvider

The WebServiceProvider annotation is specified on classes that implement a strongly typedjavax-
.xml.ws.Provider. It is used to declare that a class that satisfies the requirements for a provider (see
5.1) does indeed define a Web service endpoint, much like theWebService annotation does for SEI-based
endpoints.

TheWebServiceProvider andWebService annotations are mutually exclusive.

♦ Conformance (WebServiceProvider and WebService):A class annotated with theWebServiceProvider
annotation MUST NOT carry aWebService annotation.

Table 7.7:WebServiceProvider properties.

Property Description Default
wsdlLocation The URL for the WSDL description ””
serviceName The name of the service ””
portName The name of the port ””
targetNamespace The target namespace for the service ””

82 JAX-WS 2.0 April 19, 2006

7.9. javax.xml.ws.WebServiceRef

When resolving the URL specified as thewsdlLocation element or any document it may transitively
reference, a JAX-WS implementation MUST use the catalog facility defined in section 4.4.

7.8 javax.xml.ws.BindingType

TheBindingType annotation is applied to an endpoint implementation class.It specifies the binding to
use when publishing an endpoint of this type.

Table 7.8:BindingType properties.

Property Description Default
value The binding ID (a URI) ””

The default binding for an endpoint is the SOAP 1.1/HTTP one (see chapter 10).

7.9 javax.xml.ws.WebServiceRef

TheWebServiceRef annotation is used to declare a reference to a Web service. Itfollows the resource
pattern exemplified by thejavax.annotation.Resource annotation in JSR-250 [29].

TheWebServiceRef annotation is required to be honored when running on the JavaEE 5 platform, where
it is subject to the common resource injection rules described by the platform specification [30].

Table 7.9:WebServiceRef properties.

Property Description Default
name The name identifying the Web service

reference.
””

wsdlLocation A URL pointing to the location of the WSDL
document for the service being referred to.

””

type The resource type as a Java class object Object.class

value The service type as a Java class object Object.class

mappedName A product specific name that this resource
should be mapped to.

””

The name of the resource, as defined by thename element (or defaulted) is a name that is local to the
application component using the resource. (It’s a name in the JNDI java:comp/env namespace.) Many
application servers provide a way to map these local names tonames of resources known to the application
server. ThismappedName is often a global JNDI name, but may be a name of any form. Application servers
are not required to support any particular form or type of mapped name, nor the ability to use mapped
names. A mapped name is product-dependent and often installation-dependent. No use of a mapped name
is portable.

There are two uses to theWebServiceRef annotation:

1. To define a reference whose type is a generated service class. In this case, thetype andvalue

April 19, 2006 JAX-WS 2.0 83

Chapter 7. Annotations

element will both refer to the generated service class type.Moreover, if the reference type can be
inferred by the field/method declaration the annotation isapplied to, thetype andvalue elements
MAY have the default value (Object.class, that is). If the type cannot be inferred, then at least the
type element MUST be present with a non-default value.

2. To define a reference whose type is a SEI. In this case, thetype element MAY be present with its
default value if the type of the reference can be inferred from the annotated field/method declaration,
but thevalue element MUST always be present and refer to a generated service class type (a subtype
of javax.xml.ws.Service).

ThewsdlLocation element, if present, overrides the WSDL location information specified in theWebService
annotation of the referenced generated service class.

When resolving the URI specified as thewsdlLocation element or any document it may transitively
reference, a JAX-WS implementation MUST use the catalog facility defined in section 4.4.

7.9.1 Example

The following shows both uses of theWebServiceRef annotation.

1
2 // Generated Service Interface
3
4 @WebServiceClient(name="StockQuoteService",
5 targetNamespace="...",
6 wsdlLocation="...")
7 public interface StockQuoteService extends javax.xml.ws.Service {
8 @WebEndpoint(name="StockQuoteHTTPPort")
9 StockQuoteProvider getStockQuoteHTTPPort();

10
11 @WebEndpoint(name="StockQuoteSMTPPort")
12 StockQuoteProvider getStockQuoteSMTPPort();
13 }
14
15 // Generated SEI
16
17 @WebService(name="StockQuoteProvider",
18 targetNamespace="...")
19 public interface StockQuoteProvider {
20 Double getStockQuote(String ticker);
21 }
22
23 // Sample client code
24
25 @Stateless
26 public ClientComponent {
27
28 // WebServiceRef using the generated service interface type
29 @WebServiceRef
30 public StockQuoteService stockQuoteService;
31
32 // WebServiceRef using the SEI type
33 @WebServiceRef(StockQuoteService.class)
34 private StockQuoteProvider stockQuoteProvider;

84 JAX-WS 2.0 April 19, 2006

7.11. Annotations Defined by JSR-181

35
36 // other methods go here...
37 }

7.10 javax.xml.ws.WebServiceRefs

TheWebServiceRefs annotation is used to declare multiple references to Web services on a single class.
It is necessary to work around the limition against specifying repeated annotations of the same type on
any given class, which prevents listing multiplejavax.ws.WebServiceRef annotations one after the
other. This annotation follows the resource pattern exemplified by thejavax.annotation.Resources
annotation in JSR-250 [29].

Since no name and type can be inferred in this case, eachWebServiceRefannotation inside aWebServiceRefs
MUST containname andtype elements with non-default values.

TheWebServiceRef annotation is required to be honored when running on the JavaEE 5 platform, where
it is subject to the common resource injection rules described by the platform specification [30].

Table 7.10:WebServiceRefs properties.

Property Description Default
value An array ofWebServiceRef annotations,

each defining a web service reference.
{}

7.10.1 Example

The following shows how to use theWebServiceRefs annotation to declare at the class level two web
service references. The first one uses the SEI type, while the second one uses a generated service class type.

1
2 @WebServiceRefs({@WebServiceRef(name="accounting"
3 type=AccountingPortType.class,
4 value=AccountingService.class),
5 @WebServiceRef(name="payroll",
6 type=PayrollService.class)})
7 @Stateless
8 public MyComponent {
9

10 // methods using the declared resources go here...
11 }

7.11 Annotations Defined by JSR-181

In addition to the annotations defined in the preceding sections, JAX-WS 2.0 uses several annotations def-
ined by JSR-181.

♦ Conformance (JSR-181 conformance):A JAX-WS 2.0 implementation MUST be conformant to the JAX-
WS profile of JSR-181 1.1 [13].

April 19, 2006 JAX-WS 2.0 85

Chapter 7. Annotations

As a convenience to the reader, the following sections reproduce the definition of the JSR-181 annotations
applicable to JAX-WS.

7.11.1 javax.jws.WebService

1 @Target({TYPE})
2 public @interface WebService {
3 String name() default "";
4 String targetNamespace() default "";
5 String serviceName() default "";
6 String wsdlLocation() default "";
7 String endpointInterface() default "";
8 String portName() default "";
9 };

Consistently with the URI resolution process in JAX-WS, when resolving the URI specified as thewsdlLocation
element or any document it may transitively reference, a JAX-WS implementation MUST use the catalog
facility defined in section 4.4.

7.11.2 javax.jws.WebMethod

1 @Target({METHOD})
2 public @interface WebMethod {
3 String operationName() default "";
4 String action() default "" ;
5 boolean exclude() default false;
6 };

7.11.3 javax.jws.OneWay

1 @Target({METHOD})
2 public @interface Oneway {
3 };

7.11.4 javax.jws.WebParam

1 @Target({PARAMETER})
2 public @interface WebParam {
3 public enum Mode { IN, OUT, INOUT };
4
5 String name() default "";
6 String targetNamespace() default "";
7 Mode mode() default Mode.IN;
8 boolean header() default false;
9 String partName() default "";

10 };

7.11.5 javax.jws.WebResult

1 @Target({METHOD})

86 JAX-WS 2.0 April 19, 2006

7.11. Annotations Defined by JSR-181

2 public @interface WebResult {
3 String name() default "return";
4 String targetNamespace() default "";
5 boolean header() default false;
6 String partName() default "";
7 };

7.11.6 javax.jws.SOAPBinding

1 @Target({TYPE, METHOD})
2 public @interface SOAPBinding {
3 public enum Style { DOCUMENT, RPC }
4
5 public enum Use { LITERAL, ENCODED }
6
7 public enum ParameterStyle { BARE, WRAPPED }
8
9 Style style() default Style.DOCUMENT;

10 Use use() default Use.LITERAL;
11 ParameterStyle parameterStyle() default ParameterStyle.WRAPPED;
12 }

7.11.7 javax.jws.HandlerChain

1 @Target({TYPE})
2 public @interface HandlerChain {
3 String file();
4 String name() default "";
5 }

April 19, 2006 JAX-WS 2.0 87

Chapter 7. Annotations

88 JAX-WS 2.0 April 19, 2006

Chapter 8

Customizations

This chapter describes a standard customization facility that can be used to customize the WSDL 1.1 to Java
binding defined in section 2.

8.1 Binding Language

JAX-WS 2.0 defines an XML-based language that can be used to specify customizations to the WSDL 1.1
to Java binding. In order to maintain consistency with JAXB,we call it abinding language. Similarly,
customizations will hereafter be referred to asbinding declarations.

All XML elements defined in this section belong to thehttp://java.sun.com/xml/ns/jaxws names-
pace. For clarity, the rest of this section uses qualified element names exclusively. Wherever it appears, the
jaxws prefix is assumed to be bound to thehttp://java.sun.com/xml/ns/jaxws namespace name.

The binding language is extensible. Extensions are expressed using elements and/or attributes whose names-
pace name is different from the one used by this specification.

♦ Conformance (Standard binding declarations):The http://java.sun.com/xml/ns/jaxws names-
pace is reserved for standard JAX-WS binding declarations.Implementations MUST support all standard
JAX-WS binding declarations. Implementation-specific binding declaration extensions MUST NOT use the
http://java.sun.com/xml/ns/jaxws namespace.

♦ Conformance (Binding language extensibility):Implementations MUST ignore unknown elements and
attributes appearing inside a binding declaration whose namespace name is not the one specified in the
standard, i.e.http://java.sun.com/xml/ns/jaxws.

8.2 Binding Declaration Container

There are two ways to specify binding declarations. In the first approach, all binding declarations pertaining
to a given WSDL document are grouped together in a standalonedocument, called anexternal binding
file (see 8.4). The second approach consists in embeddeding binding declarations directly inside a WSDL
document (see 8.3).

In either case, thejaxws:bindings element is used as a container for JAX-WS binding declarations. It
contains a (possibly empty) list of binding declarations, in any order.

April 19, 2006 JAX-WS 2.0 89

Chapter 8. Customizations

1 <jaxws:bindings wsdlLocation="xs:anyURI"?
2 node="xs:string"?
3 version="string"?>
4 ...binding declarations...
5 </jaxws:bindings>

Figure 8.1: Syntax of the binding declaration container

Semantics

@wsdlLocation A URI pointing to a WSDL file establishing the scope of the contents of this binding
declaration. It MUST NOT be present if thejaxws:bindings element is used as an extension
inside a WSDL document or one of its ancestorjaxws:bindings elements already contains this
attribute.

@node An XPath expression pointing to the element in the WSDL file in scope that this binding declaration
is attached to. It MUST NOT be present if thejaxws:bindings appears inside a WSDL document.

@version A version identifier. It MUST NOT appear onjaxws:bindings elements which have any
jaxws:bindings ancestors (i.e. on non top-level binding declarations).

For the JAX-WS 2.0 specification, the version identifier, if present, MUST be"2.0". If the @version

attribute is absent, it will implicitly be assumed to be2.0.

8.3 Embedded Binding Declarations

An embedded binding declaration is specified by using thejaxws:bindings element as a WSDL exten-
sion. Embedded binding declarations MAY appear on any of theelements in the WSDL 1.1 namespace that
accept extension elements, per the schema for the WSDL 1.1 namespace as amended by the WS-I Basic
Profile 1.1[17].

A binding declaration embedded in a WSDL document can only affect the WSDL element it extends. When
ajaxws:bindings element is used as a WSDL extension, it MUST NOT have anode attribute. Moreover,
it MUST NOT have an element whose qualified name isjaxws:bindings amongs its children.

8.3.1 Example

Figure 8.2 shows a WSDL document containing binding declaration extensions. For JAXB annotations, it
assumes that the prefixjaxb is bound to the namespace namehttp://java.sun.com/xml/ns/jaxb.

8.4 External Binding File

Thejaxws:bindings element MAY appear as the root element of a XML document. Sucha document is
called anexternal binding file.

An external binding file specifies bindings for a given WSDLdocument. The WSDL document in question
is identified via the mandatorywsdlLocation attribute on the rootjaxws:bindings element in the
document.

90 JAX-WS 2.0 April 19, 2006

8.4. External Binding File

1 <wsdl:definitions targetNamespace="..." xmlns:tns=..." xmlns:stns="...">
2 <wsdl:types>
3 <xs:schema targetNamespace="http://example.org/bar">
4 <xs:annotation>
5 <xs:appinfo>
6 <jaxb:bindings>
7 ...some JAXB binding declarations...
8 </jaxb:bindings>
9 </xs:appinfo>

10 </xs:annotation>
11 <xs:element name="setLastTradePrice">
12 <xs:complexType>
13 <xs:sequence>
14 <xs:element name="tickerSymbol" type="xs:string"/>
15 <xs:element name="lastTradePrice" type="xs:float"/>
16 </xs:sequence>
17 </xs:complexType>
18 </xs:element>
19 <xs:element name="setLastTradePriceResponse">
20 <xs:complexType>
21 <xs:sequence/>
22 </xs:complexType>
23 </xs:element>
24 </xs:schema>
25 </wsdl:types>
26
27 <wsdl:message name="setLastTradePrice">
28 <wsdl:part name="setPrice" element="stns:setLastTradePrice"/>
29 </wsdl:message>
30
31 <wsdl:message name="setLastTradePriceResponse">
32 <wsdl:part name="setPriceResponse" type="stns:setLastTradePriceResponse"/>
33 </wsdl:message>
34
35 <wsdl:portType name="StockQuoteUpdater">
36 <wsdl:operation name="setLastTradePrice">
37 <wsdl:input message="tns:setLastTradePrice"/>
38 <wsdl:output message="tns:setLastTradePriceResponse"/>
39 <jaxws:bindings>
40 <jaxws:method name="updatePrice"/>
41 </jaxws:bindings>
42 </wsdl:operation>
43 <jaxws:bindings>
44 <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
45 </jaxws:bindings>
46 </wsdl:portType>
47
48 <jaxws:bindings>
49 <jaxws:package name="com.acme.foo"/>
50 ...additional binding declarations...
51 </jaxws:bindings>
52 </wsdl:definitions>

Figure 8.2: Sample WSDL document with embedded binding declarations

April 19, 2006 JAX-WS 2.0 91

Chapter 8. Customizations

In an external binding file,jaxws:bindings elements MAY appear as non-root elements, e.g. as a child
or descendant of the rootjaxws:bindings element. In this case, they MUST carry anode attribute iden-
tifying the element in the WSDL document they annotate. The root jaxws:bindings element implicitly
contains anode attribute whose value is//, i.e. selecting the root element in the document. An XPath ex-
pression on a non-rootjaxws:bindings element selects zero or more nodes from the set of nodes selected
by its parentjaxws:bindings element.

External binding files are semantically equivalent to embedded binding declarations (see 8.3). When a
JAX-WS implementation processes a WSDL document for which there is an external binding file, it MUST
operate as if all binding declarations specified in the external binding file were instead specified as embedded
declarations on the nodes in the in the WSDL document they target. It is an error if, upon embedding the
binding declarations defined in one or more external binding files, the resulting WSDL document contains
conflicting binding declarations.

♦ Conformance (Multiple binding files):Implementations MUST support specifying any number of exter-
nal JAX-WS and JAXB binding files for processing in conjunction with at least one WSDL document.

Please refer to section 8.5 for more information on processing JAXB binding declarations.

8.4.1 Example

Figures 8.3 and 8.4 show an example external binding file andWSDL document respectively that express
the same set of binding declarations as the WSDL document in 8.3.1.

1 <jaxws:bindings wsdlLocation="http://example.org/foo.wsdl">
2 <jaxws:package name="com.acme.foo"/>
3 <jaxws:bindings
4 node="wsdl:types/xs:schema[targetNamespace=’http://example.org/bar’]">
5 <jaxb:bindings>
6 ...some JAXB binding declarations...
7 </jaxb:bindings>
8 </jaxws:bindings>
9 <jaxws:bindings node="wsdl:portType[@name=’StockQuoteUpdater’]">

10 <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
11 <jaxws:bindings node="wsdl:operation[@name=’setLastTradePrice’]">
12 <jaxws:method name="updatePrice"/>
13 </jaxws:bindings>
14 </jaxws:bindings>
15 ...additional binding declarations....
16 </jaxws:bindings>

Figure 8.3: Sample external binding file for WSDL in figure 8.4

8.5 Using JAXB Binding Declarations

It is possible to use JAXB binding declarations in conjunction with JAX-WS.

The JAXB 2.0 bindings element, henceforth referred to asjaxb:bindings, MAY appear as an annotation
inside a schema document embedded in a WSDL document, i.e. asa descendant of axs:schema element
whose parent is thewsdl:types element. It affects the data binding as specified by JAXB 2.0.

92 JAX-WS 2.0 April 19, 2006

8.5. Using JAXB Binding Declarations

1 <wsdl:definitions targetNamespace="..." xmlns:tns="..." xmlns:stns="...">
2 <wsdl:types>
3 <xs:schema targetNamespace="http://example.org/bar">
4 <xs:element name="setLastTradePrice">
5 <xs:complexType>
6 <xs:sequence>
7 <xs:element name="tickerSymbol" type="xs:string"/>
8 <xs:element name="lastTradePrice" type="xs:float"/>
9 </xs:sequence>

10 </xs:complexType>
11 </xs:element>
12 <xs:element name="setLastTradePriceResponse">
13 <xs:complexType>
14 <xs:sequence/>
15 </xs:complexType>
16 </xs:element>
17 </xs:schema>
18 </wsdl:types>
19
20 <wsdl:message name="setLastTradePrice">
21 <wsdl:part name="setPrice" element="stns:setLastTradePrice"/>
22 </wsdl:message>
23
24 <wsdl:message name="setLastTradePriceResponse">
25 <wsdl:part name="setPriceResponse"
26 type="stns:setLastTradePriceResponse"/>
27 </wsdl:message>
28
29 <wsdl:portType name="StockQuoteUpdater">
30 <wsdl:operation name="setLastTradePrice">
31 <wsdl:input message="tns:setLastTradePrice"/>
32 <wsdl:output message="tns:setLastTradePriceResponse"/>
33 </wsdl:operation>
34 </wsdl:portType>
35 </wsdl:definitions>

Figure 8.4: WSDL document referred to by external binding file in figure 8.3

April 19, 2006 JAX-WS 2.0 93

Chapter 8. Customizations

Additionally, jaxb:bindingsMAY appear inside a JAX-WS external binding file as a child ofajaxws:-
bindings element whosenode attribute points to axs:schema element inside a WSDL document. When
the schema is processed, the outcome MUST be as if thejaxb:bindings element was inlined inside the
schema document as an annotation on the schema component.

While processing a JAXB binding declaration (i.e. ajaxb:bindings element) for a schema document
embedded inside a WSDL document, all XPath expressions thatappear inside it MUST be interpreted as if
the containingxs:schema element was the root of a standalone schema document.

Editors Note 8.1 This last requirement ensures that JAXB processors don’t have to be extended to incor-
porate knowledge of WSDL. In particular, it becomes possible to take a JAXB binding file and embed it in a
JAX-WS binding file as-is, without fixing up all its XPath expressions, even in the case that the XML Schema
the JAXB binding file refers to was embedded in a WSDL.

8.6 Scoping of Bindings

Binding declarations are scoped according to the parent-child hierarchy in the WSDL document. For in-
stance, when determining the value of thejaxws:enableWrapperStyle customization parameter for a
portType operation, binding declarations MUST be processed in the following order, according to the el-
ement they pertain to: (1) the portType operation in question, (2) its parent portType, (3) the definitions
element.

Tools MUST NOT ignore binding declarations. It is an error ifupon applying all the customizations in
effect for a given WSDL document, any of the generated Java source code artifacts does not contain legal
Java syntax. In particular, it is an error to use any reservedkeywords as the name of a Java field, method,
type or package.

8.7 Standard Binding Declarations

The following sections detail the predefined binding declarations, classified according to the WSDL ele-
ment they’re allowed on. All these declarations reside in the http://java.sun.com/xml/ns/jaxws

namespace.

8.7.1 Definitions

The following binding declarations MAY appear in the context of a WSDL document, either as an exten-
sion to thewsdl:definitions element or in an external binding file at a place where there is a WSDL
document in scope.

1 <jaxws:package name="xs:string">?
2 <jaxws:javadoc>xs:string</jaxws:javadoc>?
3 </jaxws:package>
4
5 <jaxws:enableWrapperStyle>?
6 xs:boolean
7 </jaxws:enableWrapperStyle>
8
9 <jaxws:enableAsyncMapping>?

10 xs:boolean

94 JAX-WS 2.0 April 19, 2006

8.7. Standard Binding Declarations

11 </jaxws:enableAsyncMapping>
12
13 <jaxws:enableMIMEContent>?
14 xs:boolean
15 </jaxws:enableMIMEContent>

Semantics

package/@nameName of the Java package for the targetNamespace of the parent wsdl:definitions
element.

package/javadoc/text() Package-level javadoc string.

enableWrapperStyle If present with a boolean value oftrue (resp. false), wrapper style is enabled
(resp. disabled) by default for all operations.

enableAsyncMapping If present with a boolean value oftrue (resp.false), asynchronous mappings are
enabled (resp. disbled) by default for all operations.

enableMIMEContent If present with a boolean value oftrue (resp.false), use of themime:content
information is enabled (resp. disabled) by default for all operations.

TheenableWrapperStyle declaration only affects operations that qualify for the wrapper style per the
JAX-WS specification. By default, this declaration istrue, i.e. wrapper style processing is turned on
by default for all qualified operations, and must be disabled by using ajaxws:enableWrapperStyle
declaration with a value offalse in the appropriate scope.

8.7.2 PortType

The following binding declarations MAY appear in the context of a WSDL portType, either as an extension
to thewsdl:portType element or with anode attribute pointing at one.

1 <jaxws:class name="xs:string">?
2 <jaxws:javadoc>xs:string</jaxws:javadoc>?
3 </jaxws:class>
4
5 <jaxws:enableWrapperStyle>?
6 xs:boolean
7 </jaxws:enableWrapperStyle>
8
9 <jaxws:enableAsyncMapping>xs:boolean</jaxws:enableAsyncMapping>?

Semantics

class/@nameFully qualified name of the generated service endpoint interface corresponding to the parent
wsdl:portType.

class/javadoc/text() Class-level javadoc string.

enableWrapperStyle If present with a boolean value oftrue (resp. false), wrapper style is enabled
(resp. disabled) by default for all operations in thiswsdl:portType.

April 19, 2006 JAX-WS 2.0 95

Chapter 8. Customizations

enableAsyncMapping If present with a boolean value oftrue (resp.false), asynchronous mappings are
enabled (resp. disabled) by default for all operations in this wsdl:portType.

8.7.3 PortType Operation

The following binding declarations MAY appear in the context of a WSDL portType operation, either as an
extension to thewsdl:portType/wsdl:operation element or with anode attribute pointing at one.

1 <jaxws:method name="xs:string">?
2 <jaxws:javadoc>xs:string</jaxws:javadoc>?
3 </jaxws:method>
4
5 <jaxws:enableWrapperStyle>?
6 xs:boolean
7 </jaxws:enableWrapperStyle>
8
9 <jaxws:enableAsyncMapping>?

10 xs:boolean
11 </jaxws:enableAsyncMapping>
12
13 <jaxws:parameter part="xs:string"
14 childElementName="xs:QName"?
15 name="xs:string"/>*

Semantics

method/@nameName of the Java method corresponding to thiswsdl:operation.

method/javadoc/text() Method-level javadoc string.

enableWrapperStyle If present with a boolean value oftrue (resp. false), wrapper style is enabled
(resp. disabled) by default for thiswsdl:operation.

enableAsyncMapping If present with a boolean value oftrue, asynchronous mappings are enabled by
default for thiswsdl:operation.

parameter/@part A XPath expression identifying awsdl:part child of awsdl:message.

parameter/@childElementName The qualified name of a child element information item of theglobal
type definition or global element declaration referred to by thewsdl:part identified by the previous
attribute.

parameter/@name The name of the Java formal parameter corresponding to the parameter identified by
the previous two attributes.

It is an error if two parameters that do not correspond to the same Java formal parameter are assigned the
same name, or if a part/element that corresponds to the Java method return value is assigned a name.

96 JAX-WS 2.0 April 19, 2006

8.7. Standard Binding Declarations

8.7.4 PortType Fault Message

The following binding declarations MAY appear in the context of a WSDL portType operation’s fault mes-
sage, either as an extension to thewsdl:portType/wsdl:operation/wsdl:fault element or with a
node attribute pointing at one.

1 <jaxws:class name="xs:string">?
2 <jaxws:javadoc>xs:string</jaxws:javadoc>?
3 </jaxws:class>

Semantics

class/@nameThe name of the generated exception class for this fault.

class/javadoc/text() Class-level javadoc string.

It is an error if faults that refer to the samewsdl:message element are mapped to exception classes with
different names.

8.7.5 Binding

The following binding declarations MAY appear in the context of a WSDL binding, either as an extension
to thewsdl:binding element or with anode attribute pointing at one.

1 <jaxws:enableMIMEContent>?
2 xs:boolean
3 </jaxws:enableMIMEContent>

Semantics

enableMIMEContent If present with a boolean value oftrue (resp.false), use of themime:content
information is enabled (resp. disabled) for all operationsin this binding.

8.7.6 Binding Operation

The following binding declarations MAY appear in the context of a WSDL binding operation, either as an
extension to thewsdl:binding/wsdl:operation element or with anode attribute pointing at one.

1 <jaxws:enableMIMEContent>?
2 xs:boolean
3 </jaxws:enableMIMEContent>
4
5 <jaxws:parameter part="xs:string"
6 childElementName="xs:QName"?
7 name="xs:string"/>*
8
9 <jaxws:exception part="xs:string">*

10 <jaxws:class name="xs:string">?

April 19, 2006 JAX-WS 2.0 97

Chapter 8. Customizations

11 <jaxws:javadoc>xs:string</jaxws:javadoc>?
12 </jaxws:class>
13 </jaxws:exception>

Semantics

enableMIMEContent If present with a boolean value oftrue (resp.false), use of themime:content
information is enabled (resp. disabled) for this operation.

parameter/@part A XPath expression identifying awsdl:part child of awsdl:message.

parameter/@childElementName The qualified name of a child element information item of theglobal
type definition or global element declaration referred to by thewsdl:part identified by the previous
attribute.

parameter/@name The name of the Java formal parameter corresponding to the parameter identified by
the previous two attributes. The parameter in question MUSTcorrespond to asoap:header exten-
sion.

8.7.7 Service

The following binding declarations MAY appear in the context of a WSDL service, either as an extension
to thewsdl:service element or with anode attribute pointing at one.

1 <jaxws:class name="xs:string">?
2 <jaxws:javadoc>xs:string</jaxws:javadoc>?
3 </jaxws:class>

Semantics

class/@nameThe name of the generated service interface.

class/javadoc/text() Class-level javadoc string.

8.7.8 Port

The following binding declarations MAY appear in the context of a WSDL service, either as an extension
to thewsdl:port element or with anode attribute pointing at one.

1 <jaxws:method name="xs:string">?
2 <jaxws:javadoc>xs:string</jaxws:javadoc>?
3 </jaxws:method>
4
5 <jaxws:provider/>?

Semantics

method/@nameThe name of the generated port getter method.

98 JAX-WS 2.0 April 19, 2006

8.7. Standard Binding Declarations

method/javadoc/text() Method-level javadoc string.

provider This binding declaration specifies that the annotated portwill be used with thejavax.xml.ws-
.Provider interface.

A port annotated with ajaxws:provider binding declaration is treated specially. No service endpoint in-
terface will be generated for it, since the application codewill use in its lieu thejavax.xml.ws.Provider
interface. Additionally, the port getter method on the generated service interface will be omitted.

Editors Note 8.2 Omitting a getXYZPort() method is necessary for consistency, because if it existed it would
specify the non-existing SEI type as its return type.

April 19, 2006 JAX-WS 2.0 99

Chapter 8. Customizations

100 JAX-WS 2.0 April 19, 2006

Chapter 9

Handler Framework

JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers, that
may be used to extend the capabilities of a JAX-WS runtime system. This chapter describes the handler
framework in detail.

♦ Conformance (Handler framework support):An implementation MUST support the handler framework.

9.1 Architecture

The handler framework is implemented by a JAX-WS protocol binding in both client and server side run-
times. Proxies, andDispatch instances, known collectively as binding providers, each use protocol bind-
ings to bind their abstract functionality to specific protocols (see figure 9.1). Protocol bindings can extend
the handler framework to provide protocol specific functionality; chapter 10 describes the JAX-WS SOAP
binding that extends the handler framework with SOAP specific functionality.

Client and server-side handlers are organized into an ordered list known as a handler chain. The handlers
within a handler chain are invoked each time a message is sentor received. Inbound messages are processed
by handlers prior to binding provider processing. Outboundmessages are processed by handlers after any
binding provider processing.

Handlers are invoked with a message context that provides methods to access and modify inbound and
outbound messages and to manage a set of properties. Messagecontext properties may be used to facilitate
communication between individual handlers and between handlers and client and service implementations.
Different types of handlers are invoked with different types of message context.

9.1.1 Types of Handler

JAX-WS 2.0 defines two types of handler:

Logical Handlers that only operate on message context properties and message payloads. Logical handlers
are protocol agnostic and are unable to affect protocol specific parts of a message. Logical handlers
are handlers that implementjavax.xml.ws.handler.LogicalHandler.

Protocol Handlers that operate on message context properties and protocol specific messages. Protocol
handlers are specific to a particular protocol and may access and change protocol specific aspects of a

April 19, 2006 JAX-WS 2.0 101

Chapter 9. Handler Framework

...

Proxy

...

Dispatch

getBinding():Binding

BindingProvider
���������1

has-a

�
�

�
���

implements
@

@
@

@@I

extends

getBinding():Binding

Endpoint

PPPPPPPPPq

has-a

setHandlerChain(List):void

getHandlerChain():List

Binding

...

Handler
?

one-to-many

Figure 9.1: Handler architecture

message. Protocol handlers are handlers that implement anyinterface derived fromjavax.xml.ws-
.handler.Handler exceptjavax.xml.ws.handler.LogicalHandler.

Figure 9.2 shows the class hierarchy for handlers.

Handlers for protocols other than SOAP are expected to implement a protocol-specific interface that extends
javax.xml.ws.handler.Handler.

9.1.2 Binding Responsibilities

The following subsections describe the responsibilities of the protocol binding when hosting a handler chain.

9.1.2.1 Handler and Message Context Management

The binding is responsible for instantiation, invocation,and destruction of handlers according to the rules
specified in section 9.3. The binding is responsible for instantiation and management of message contexts
according to the rules specified in section 9.4

♦ Conformance (Logical handler support):All binding implementations MUST support logical handlers
(see section 9.1.1) being deployed in their handler chains.

♦ Conformance (Other handler support):Binding implementations MAY support other handler types (see
section 9.1.1) being deployed in their handler chains.

102 JAX-WS 2.0 April 19, 2006

9.1. Architecture

T extends LogicalMessageContext

LogicalHandler<T>

�
�

�
�

�
��

extends

getHeaders():Set<QName>

T extends SOAPMessageContext
SOAPHandler<T>

@
@

@
@

@
@I

extends

close(MessageContext):void

handleFault(T):boolean

handleMessage(T):boolean

destroy():void

init(Map<String,Object>):void

T extends MessageContext
Handler<T>

Figure 9.2: Handler class hierarchy

♦ Conformance (Incompatible handlers):An implementation MUST throwWebServiceExceptionwhen,
at the time a binding provider is created, the handler chain returned by the configuredHandlerResolver
contains an incompatible handler.

♦ Conformance (Incompatible handlers):Implementations MUST throw aWebServiceExceptionwhen
attempting to configure an incompatible handler using theBinding.setHandlerChainmethod.

9.1.2.2 Message Dispatch

The binding is responsible for dispatch of both outbound andinbound messages after handler processing.
Outbound messages are dispatched using whatever means the protocol binding uses for communication.
Inbound messages are dispatched to the binding provider. JAX-WS defines no standard interface between
binding providers and their binding.

9.1.2.3 Exception Handling

The binding is responsible for catching runtime exceptionsthrown by handlers and respecting any resulting
message direction and message type change as described in section 9.3.2.

Outbound exceptions1 are converted to protocol fault messages and dispatched using whatever means the
protocol binding uses for communication. Specific protocol bindings describe the mechanism for their

1Outbound exceptions are exceptions thrown by a handler thatresult in the message direction being set to outbound according
to the rules in section 9.3.2.

April 19, 2006 JAX-WS 2.0 103

Chapter 9. Handler Framework

particular protocol, section 10.2.2 describes the mechanism for the SOAP 1.1 binding. Inbound exceptions
are passed to the binding provider.

9.2 Configuration

Handler chains may be configured either programmatically or using deployment metadata. The following
subsections describe each form of configuration.

9.2.1 Programmatic Configuration

JAX-WS only defines APIs for programmatic configuration ofclient side handler chains – server side han-
dler chains are expected to be configured using deployment metadata.

9.2.1.1 javax.xml.ws.handler.HandlerResolver

A Service instance maintains a handler resolver that is used when creating proxies orDispatch in-
stances, known collectively as binding providers. During the creation of a binding provider, the handler
resolver currently registered with a service is used to create a handler chain, which in turn is then used to
configure the binding provider. AService instance provides access to ahandlerResolver property,
via theService.getHandlerResolver andService.setHandlerResolvermethods. AHandler-
Resolver implements a single method,getHandlerChain, which has one argument, aPortInfo object.
The JAX-WS runtime uses thePortInfo argument to pass theHandlerResolver of the service, port and
binding in use. TheHandlerResolvermay use any of this information to decide which handlers to use in
constructing the requested handler chain.

When aService instance is used to create an instance of a binding provider then the created instance is
configured with the handler chain created by theHandlerResolver instance registered on theService
instance at that point in time.

♦ Conformance (Handler chain snapshot):Changing the handler resolver configured for aService in-
stance MUST NOT affect the handlers on previously created proxies, orDispatch instances.

9.2.1.2 Handler Ordering

The handler chain for a binding is constructed by starting with the handler chain as returned by theHandler-

Resolver for the service in use and sorting its elements so that all logical handlers precede all protocol
handlers. In performing this operation, the order of handlers of any given type (logical or protocol) in the
original chain is maintained. Figure 9.3 illustrates this.

Section 9.3.2 describes how the handler order relates to theorder of handler execution for inbound and
outbound messages.

9.2.1.3 javax.jws.HandlerChain annotation

Thejavax.jws.HandlerChain annotation defined by JSR-181 [13] may be used to specify in adeclar-
ative way the handler chain to use for a service.

104 JAX-WS 2.0 April 19, 2006

9.2. Configuration

'

&

$

%

Binding Provider'

&

$

%

Binding

L1 L2 L3 P1 P2 P3 P4 P5 P6

?

Proxy/Dispatch creation

'

&

$

%

Service'

&

$

%

Handler Resolver

L1 P1 P2 L2 P3 P4 P5 L3 P6

Figure 9.3: Handler ordering, Ln and Pn represent logical and protocol handlers respectively.

When used in conunction with JAX-WS, thename element of theHandlerChain annotation, if present,
MUST have the default value (the empty string).

In addition to appearing on a endpoint implementation classor a SEI, as specified by JSR-181, thehandlerChain

annotation MAY appear on a generated service class. In this case, it affects all the proxies andDispatch
instances created using any of the ports on the service.

♦ Conformance (HandlerChain annotation):An implementation MUST support using theHandlerChain
annotation on an endpoint implementation class, includinga provider, on an endpoint interface and on a
generated service class.

On the client, theHandlerChain annotation can be seen as a shorthand way of defining and installing a
handler resolver (see 4.1.3).

♦ Conformance (Handler resolver for a HandlerChain annotation): For a generated service class (see 2.7)
which is annotated with aHandlerChain annotation, the default handler resolver MUST return handler
chains consistent with the contents of the handler chain descriptor referenced by theHandlerChain anno-
tation.

Figure 9.4 shows an endpoint implementation class annotated with aHandlerChain annotation.

9.2.1.4 javax.xml.ws.Binding

TheBinding interface is an abstraction of a JAX-WS protocol binding (see section 6.1 for more details). As
described above, the handler chain initially configured onan instance is a snapshot of the applicable handlers

April 19, 2006 JAX-WS 2.0 105

Chapter 9. Handler Framework

1 @WebService
2 @HandlerChain(file="sample_chain.xml")
3 public class MyService {
4 ...
5 }

Figure 9.4: Use of theHandlerChain annotation

configured on theService instance at the time of creation.Binding provides methods to manipulate the
initially configured handler chain for a specific instance.

♦ Conformance (Binding handler manipulation):Changing the handler chain on aBinding instance MUST
NOT cause any change to the handler chains configured on theService instance used to create the
Binding instance.

9.2.2 Deployment Model

JAX-WS defines no standard deployment model for handlers. Such a model is provided by JSR 109[14]
“Implementing Enterprise Web Services”.

9.3 Processing Model

This section describes the processing model for handlers within the handler framework.

9.3.1 Handler Lifecycle

In some cases, a JAX-WS implementation must instantiate handler classes directly, e.g. in a container
environment or when using theHandlerChain annotation. When doing so, an implementation must invoke
the handler lifecycle methods as prescribed in this section.

If an application does its own instantiation of handlers, e.g. using a handler resolver, then the burden of
calling any handler lifecycle methods falls on the application itself. This should not be seen as inconsistent,
because handlers are logically part of the application, so their contract will be known to the application
developer.

The JAX-WS runtime system manages the lifecycle of handlersby invoking any methods of the handler
class annotated as lifecycle methods before and after dispatching requests to the handler itself.

The JAX-WS runtime system is responsible for loading the handler class and instantiating the corresponding
handler object according to the instruction contained in the applicable handler configuration file or deploy-
ment descriptor.

The lifecycle of a handler instance begins when the JAX-WS runtime system creates a new instance of the
handler class.

The runtime MUST then carry out any injections requested by the handler, typically via thejavax-
.annotation.Resource annotation. After all the injections have been carried out,including in the case
where no injections were requested, the runtime MUST invokethe method carrying ajavax.annotation-
.PostConstruct annotation, if present. Such a method MUST satisfy the requirements in JSR-250 [29]

106 JAX-WS 2.0 April 19, 2006

9.3. Processing Model

for lifecycle methods (i.e. it has a void return type and takes zero arguments). The handler instance is then
ready for use.

♦ Conformance (Handler initialization):After injection has been completed, an implementation MUST
call the lifecycle method annotated withPostConstruct, if present, prior to invoking any other method
on a handler instance.

Once the handler instance is created and initialized it is placed into theReady state. While in theReady
state the JAX-WS runtime system may invoke other handler methods as required.

The lifecycle of a handler instance ends when the JAX-WS runtime system stops using the handler for
processing inbound or outbound messages. After taking the handler offline, a JAX-WS implementation
SHOULD invoke the lifecycle method which carries ajavax.annotation.PreDestroy annotation, if
present, so as to permit the handler to clean up its resources. Such a method MUST satisfy the requirements
in JSR-250 [29] for lifecycle methods

An implementation can only release handlers after the instance they are attached to, be it a proxy, a
Dispatch object, an endpoint or some other component, e.g. a EJB object, is released. Consequently,
in non-container environments, it is impossible to call thePreDestroy method in a reliable way, and han-
dler instance cleanup must be left to finalizer methods and regular garbage collection.

♦ Conformance (Handler destruction):In a managed environment, prior to releasing a handler instance, an
implementation MUST call the lifecycle method annotated with PreDestroy method, if present, on any
Handler instances which it instantiated.

The handler instance must release its resources and performcleanup in the implementation of thePreDestroy
lifecycle method. After invocation of thePreDestroy method(s), the handler instance will be made avail-
able for garbage collection.

9.3.2 Handler Execution

As described in section 9.2.1.2, a set of handlers is managedby a binding as an ordered list called a handler
chain. Unless modified by the actions of a handler (see below) normal processing involves each handler in
the chain being invoked in turn. Each handler is passed a message context (see section 9.4) whose contents
may be manipulated by the handler.

For outbound messages handler processing starts with the first handler in the chain and proceeds in the same
order as the handler chain. For inbound messages the order ofprocessing is reversed: processing starts with
the last handler in the chain and proceeds in the reverse order of the handler chain. E.g., consider a handler
chain that consists of six handlersH1 . . . H6 in that order: for outbound messages handlerH1 would be
invoked first followed byH2, H3, . . . , and finally handlerH6; for inbound messagesH6 would be invoked
first followed byH5, H4, . . . , and finallyH1.

In the following discussion the terms next handler and previous handler are used. These terms are relative
to the direction of the message, table 9.1 summarizes their meaning.

Handlers may change the direction of messages and the order of handler processing by throwing an exception
or by returningfalse from handleMessage or handleFault. The following subsections describe each
handler method and the changes to handler chain processing they may cause.

April 19, 2006 JAX-WS 2.0 107

Chapter 9. Handler Framework

Message Direction Term Handler
Inbound Next Hi−1

Previous Hi+1

Outbound Next Hi+1

Previous Hi−1

Table 9.1: Next and previous handlers for handlerHi.

9.3.2.1 handleMessage

This method is called for normal message processing. Following completion of its work thehandle-
Message implementation can do one of the following:

Return true This indicates that normal message processing should continue. The runtime invokeshandle-
Message on the next handler or dispatches the message (see section 9.1.2.2) if there are no further
handlers.

Return false This indicates that normal message processing should cease. Subsequent actions depend
on whether the message exchange pattern (MEP) in use requires a response to themessage currently
being processed2 or not:

ResponseThe message direction is reversed, the runtime invokeshandleMessage on the next3

handler or dispatches the message (see section 9.1.2.2) if there are no further handlers.

No responseNormal message processing stops,close is called on each previously invoked handler
in the chain, the message is dispatched (see section 9.1.2.2).

Throw ProtocolException or a subclassThis indicates that normal message processing should cease.
Subsequent actions depend on whether the MEP in use requiresa response to the message currently
being processed or not:

ResponseNormal message processing stops, fault message processingstarts. The message direction
is reversed, if the message is not already a fault message then it is replaced with a fault message4,
and the runtime invokeshandleFault on the next4 handler or dispatches the message (see
section 9.1.2.2) if there are no further handlers.

No responseNormal message processing stops,close is called on each previously invoked handler
in the chain, the exception is dispatched (see section 9.1.2.3).

Throw any other runtime exception This indicates that normal message processing should cease. Subse-
quent actions depend on whether the MEP in use includes a response to the message currently being
processed or not:

ResponseNormal message processing stops,close is called on each previously invoked handler in
the chain, the message direction is reversed, and the exception is dispatched (see section 9.1.2.3).

No responseNormal message processing stops,close is called on each previously invoked handler
in the chain, the exception is dispatched (see section 9.1.2.3).

2For a request-response MEP, if the message direction is reversed during processing of a request message then the message
becomes a response message. Subsequent handler processingtakes this change into account.

3Next in this context means the next handler taking into account the message direction reversal
4The handler may have already converted the message to a faultmessage, in which case no change is made.

108 JAX-WS 2.0 April 19, 2006

9.4. Message Context

9.3.2.2 handleFault

Called for fault message processing, following completionof its work thehandleFault implementation
can do one of the following:

Return true This indicates that fault message processing should continue. The runtime invokeshandle-
Fault on the next handler or dispatches the fault message (see section 9.1.2.2) if there are no further
handlers.

Return false This indicates that fault message processing should cease.Fault message processing stops,
close is called on each previously invoked handler in the chain, the fault message is dispatched (see
section 9.1.2.2).

Throw ProtocolException or a subclassThis indicates that fault message processing should cease.
Fault message processing stops,close is called on each previously invoked handler in the chain,
the exception is dispatched (see section 9.1.2.3).

Throw any other runtime exception This indicates that fault message processing should cease.Fault mes-
sage processing stops,close is called on each previously invoked handler in the chain, the exception
is dispatched (see section 9.1.2.3).

9.3.2.3 close

A handler’sclose method is called at the conclusion of a message exchange pattern (MEP). It is called
just prior to the binding dispatching the final message, fault or exception of the MEP and may be used to
clean up per-MEP resources allocated by a handler. Theclose method is only called on handlers that were
previously invoked via eitherhandleMessage or handleFault

♦ Conformance (Invokingclose): At the conclusion of an MEP, an implementation MUST call theclose

method of each handler that was previously invoked during that MEP via eitherhandleMessage orhandle-
Fault.

♦ Conformance (Order ofclose invocations): Handlers are invoked in the reverse order in which they
were first invoked to handle a message according to the rulesfor normal message processing (see 9.3.2).

9.3.3 Handler Implementation Considerations

Handler instances may be pooled by a JAX-WS runtime system. All instances of a specific handler are
considered equivalent by a JAX-WS runtime system and any instance may be chosen to handle a particular
message. Different handler instances may be used to handle each message of an MEP. Different threads
may be used for each handler in a handler chain, for each message in an MEP or any combination of the
two. Handlers should not rely on thread local state to share information. Handlers should instead use the
message context, see section 9.4.

9.4 Message Context

Handlers are invoked with a message context that provides methods to access and modify inbound and
outbound messages and to manage a set of properties.

April 19, 2006 JAX-WS 2.0 109

Chapter 9. Handler Framework

Different types of handler are invoked with different typesof message context. Sections 9.4.1 and 9.4.2
describeMessageContext andLogicalMessageContext respectively. In addition, JAX-WS bindings
may define a message context subtype for their particular protocol binding that provides access to protocol
specific features. Section 10.3 describes the message context subtype for the JAX-WS SOAP binding.

9.4.1 javax.xml.ws.handler.MessageContext

MessageContext is the super interface for all JAX-WS message contexts. It extendsMap<String,-
Object> with additional methods and constants to manage a set of properties that enable handlers in a
handler chain to share processing related state. For example, a handler may use theput method to insert
a property in the message context that one or more other handlers in the handler chain may subsequently
obtain via theget method.

Properties are scoped as eitherAPPLICATION or HANDLER. All properties are available to all handlers for
an instance of an MEP on a particular endpoint. E.g., if a logical handler puts a property in the message
context, that property will also be available to any protocol handlers in the chain during the execution of an
MEP instance.APPLICATION scoped properties are also made available to client applications (see section
4.2.1) and service endpoint implementations. The defaultscope for a property isHANDLER.

♦ Conformance (Message context property scope):Properties in a message context MUST be shared across
all handler invocations for a particular instance of an MEP on any particular endpoint.

9.4.1.1 Standard Message Context Properties

Table 9.2 lists the set of standardMessageContext properties.

The standard properties form a set of metadata that describes the context of a particular message. The
property values may be manipulated by client applications,service endpoint implementations, the JAX-WS
runtime or handlers deployed in a protocol binding. A JAX-WSruntime is expected to implement support
for those properties shown as mandatory and may implement support for those properties shown as optional.

Table 9.3 lists the standardMessageContext properties specific to the HTTP protocol. These properties
are only required to be present when using an HTTP-based binding.

Table 9.4 lists those properties that are specific to endpoints running inside a servlet container. These
properties are only required to be present in the message context of an endpoint that is deployed inside a
servlet container and uses an HTTP-based binding.

9.4.2 javax.xml.ws.handler.LogicalMessageContext

Logical handlers (see section 9.1.1) are passed a message context of typeLogicalMessageContextwhen
invoked. LogicalMessageContext extendsMessageContext with methods to obtain and modify the
message payload, it does not provide access to the protocol specific aspects of a message. A protocol binding
defines what component of a message are available via a logical message context. E.g., the SOAP binding,
see section 10.1.1.2, defines that a logical handler deployed in a SOAP binding can access the contents of
the SOAP body but not the SOAP headers whereas the XML/HTTP binding described in chapter 11 defines
that a logical handler can access the entire XML payload of a message.

ThegetSource()method ofLogicalMessageContextMUST return null whenever the message doesn’t
contain an actual payload. A case in which this might happen is when, on the server, the endpoint imple-

110 JAX-WS 2.0 April 19, 2006

9.4. Message Context

Table 9.2: StandardMessageContext properties.
Name Type Mandatory Description

javax.xml.ws.handler.message

.outbound Boolean Y Specifies the message direction:true

for outbound messages,false for in-
bound messages.

javax.xml.ws.binding.attachments

.inbound Map<String,DataHandler> Y A map of attachments to an inbound
message. The key is a unique identif-
ier for the attachment. The value is a
DataHandler for the attachment data.
Bindings describe how to carry attach-
ments with messages.

.outbound Map<String,DataHandler> Y A map of attachments to an outbound
message. The key is a unique identif-
ier for the attachment. The value is a
DataHandler for the attachment data.
Bindings describe how to carry attach-
ments with messages.

javax.xml.ws.wsdl

.description URI N A resolvable URI that may be used to
obtain access to the WSDL for the end-
point.

.service QName N The name of the service being invoked
in the WSDL.

.port QName N The name of the port over which the
current message was received in the
WSDL.

.interface QName N The name of the port type to which the
current message belongs.

.operation QName N The name of the WSDL operation to
which the current message belongs.
The namespace is the target namespace
of the WSDL definitions element.

April 19, 2006 JAX-WS 2.0 111

Chapter 9. Handler Framework

Table 9.3: Standard HTTPMessageContext properties.
Name Type Mandatory Description

javax.xml.ws.http.request

.headers Map<String,List<String>> Y A map of the HTTP headers for the re-
quest message. The key is the header
name. The value is a list of values for
that header.

.method String Y The HTTP method for the request mes-
sage.

.querystring String Y The HTTP query string for the
request message, ornull if the
request does not have any. If
the address specified using the
javax.xml.ws.service.endpoint.address
in the BindingProvider contains a
query string and if the querystring
property is set by the client it will
override the existing query string in the
javax.xml.ws.service.endpoint.address
property. The value of the property
does not include the leading ”?” of the
query string in it. This property is only
used with HTTP binding.

.pathinfo String Y Extra path information associated with
the URL the client sent when it made
this request. The extra path informa-
tion follows the base url path but pre-
cedes the query string and will start
with a ”/” character.

javax.xml.ws.http.response

.headers Map<String,List<String>> Y A map of the HTTP headers for the re-
sponse message. The key is the header
name. The value is a list of values for
that header.

.code Integer Y The HTTP response status code.

112 JAX-WS 2.0 April 19, 2006

9.4. Message Context

Table 9.4: Standard Servlet Container-SpecificMessageContext properties.
Name Type Mandatory Description

javax.xml.ws.servlet

.context javax.servlet.ServletContext Y TheServletContext ob-
ject belonging to the web
application that contains the
endpoint.

.request javax.servlet.http.HttpServletRequest Y TheHttpServletRequest

object associated with the re-
quest currently being served.

.response javax.servlet.http.HttpServletResponse Y The
HttpServletResponse

object associated with the
request currently being
served.

mentation has thrown an exception and the protocol in use does not define a notion of payload for faults
(e.g. the HTTP binding defined in chapter 11).

9.4.3 Relationship to Application Contexts

Client side binding providers have methods to access contexts for outbound and inbound messages. As
described in section 4.2.1 these contexts are used to initialize a message context at the start of a message
exchange and to obtain application scoped properties from amessage context at the end of a message ex-
change.

As described in chapter 5, service endpoint implementations may require injection of a context from which
they can access the message context for each inbound messageand manipulate the corresponding application-
scoped properties.

Handlers may manipulate the values and scope of properties within the message context as desired. E.g.,
a handler in a client-side SOAP binding might introduce a header into a SOAP request message to carry
metadata from a property that originated in aBindingProvider request context; a handler in a server-side
SOAP binding might add application scoped properties to themessage context from the contents of a header
in a request SOAP message that is then made available in the context available (via injection) to a service
endpoint implementation.

April 19, 2006 JAX-WS 2.0 113

Chapter 9. Handler Framework

114 JAX-WS 2.0 April 19, 2006

Chapter 10

SOAP Binding

This chapter describes the JAX-WS SOAP binding and its extensions to the handler framework (described
in chapter 9) for SOAP message processing.

10.1 Configuration

A SOAP binding instance requires SOAP specific configuration in addition to that described in section 9.2.
The additional information can be configured either programmatically or using deployment metadata. The
following subsections describe each form of configuration.

10.1.1 Programmatic Configuration

JAX-WS defines APIs for programmatic configuration of client-side SOAP bindings. Server side bindings
can be configured programmatically when using theEndpoint API (see 5.2), but are otherwise expected to
be configured using annotations or deployment metadata.

10.1.1.1 SOAP Roles

SOAP 1.1[2] and SOAP 1.2[3, 4] use different terminology forthe same concept: a SOAP 1.1actor is
equivalent to a SOAP 1.2role. This specification uses the SOAP 1.2 terminology.

An ultimate SOAP receiver always plays the following roles:

Next In SOAP 1.1, the next role is identified by the URI http://schemas.xmlsoap.org/soap/actor/next. In
SOAP 1.2, the next role is identified by the URI http://www.w3.org/2003/05/soap-envelope/role/next.

Ultimate receiver In SOAP 1.1 the ultimate receiver role is identified by omission of theactor attribute
from a SOAP header. In SOAP 1.2 the ultimate receiver role is identified by the URI http://www.w3-
.org/2003/05/soap-envelope/role/ultimateReceiver or by omission of therole attribute from a SOAP
header.

♦ Conformance (SOAP required roles):An implementation of the SOAP binding MUST act in the follow-
ing roles: next and ultimate receiver.

A SOAP 1.2 endpoint never plays the following role:

April 19, 2006 JAX-WS 2.0 115

Chapter 10. SOAP Binding

None In SOAP 1.2, the none role is identified by the URI http://www.w3.org/2003/05/soap-envelope/role-
/none.

♦ Conformance (SOAP required roles):An implementation of the SOAP binding MUST NOT act in the
none role.

Thejavax.xml.ws.SOAPBinding interface is an abstraction of the JAX-WS SOAP binding. It extends
javax.xml.ws.Binding with methods to configure additional SOAP roles played by the endpoint.

♦ Conformance (Default role visibility):An implementation MUST include the required next and ultimate
receiver roles in theSet returned fromSOAPBinding.getRoles.

♦ Conformance (Default role persistence):An implementation MUST add the required next and ultimate
receiver roles to the roles configured withSOAPBinding.setRoles.

♦ Conformance (None role error):An implementation MUST throwWebServiceException if a client
attempts to configure the binding to play the none role viaSOAPBinding.setRoles.

10.1.1.2 SOAP Handlers

The handler chain for a SOAP binding is configured as described in section 9.2.1. The handler chain may
contain handlers of the following types:

Logical Logical handlers are handlers that implementjavax.xml.ws.handler.LogicalHandler ei-
ther directly or indirectly. Logical handlers have access to the content of the SOAP body via the
logical message context.

SOAP SOAP handlers are handlers that implementjavax.xml.ws.handler.soap.SOAPHandler.

Mime attachments specified by thejavax.xml.ws.binding.attachments.inboundandjavax.xml-
.ws.binding.attachments.outbound properties defined in theMessageContext 9.2 can be modif-
ied in logical handlers. A SOAP message with the attachmentsspecified using the properties is generated
before invoking the firstSOAPHandler. Any changes to the two properites in consideration above inthe
MessageContext after invoking the firstSOAPHandler are ignored. TheSOAPHandler however may
change the properties in theMessageContext

Use ofjavax.xml.ws.binding.attachments.outbound property in Dispatch

• When usingDispatch in SOAP / HTTP binding in payload mode, attachments specified using the
javax.xml.ws.binding.attachments.outbound property will be included as mime attach-
ments in the message.

• When usingDispatch in SOAP / HTTP binding in message mode, thejavax.xml.ws.binding-

.attachments.outbound property will be ignored as the message type already provides a way to
specify attachments.

♦ Conformance (Incompatible handlers):An implementation MUST throwWebServiceExceptionwhen,
at the time a binding provider is created, the handler chain returned by the configuredHandlerResolver
contains an incompatible handler.

♦ Conformance (Incompatible handlers):Implementations MUST throw aWebServiceExceptionwhen
attempting to configure an incompatible handler usingBinding.setHandlerChain.

♦ Conformance (Logical handler access):An implementation MUST allow access to the contents of the
SOAP body via a logical message context.

116 JAX-WS 2.0 April 19, 2006

10.2. Processing Model

10.1.1.3 SOAP Headers

The SOAP headers understood by a handler are obtained using thegetHeaders method ofSOAPHandler.

10.1.2 Deployment Model

JAX-WS defines no standard deployment model for handlers. Such a model is provided by JSR 109[14]
“Implementing Enterprise Web Services”.

10.2 Processing Model

The SOAP binding implements the general handler framework processing model described in section 9.3
but extends it to include SOAP specific processing as described in the following subsections.

10.2.1 SOAP mustUnderstand Processing

The SOAP protocol binding performs the following additional processing on inbound SOAP messages prior
to the start of normal handler invocation processing (see section 9.3.2). Refer to the SOAP specification[2, 3,
4] for a normative description of the SOAP processing model.This section is not intended to supercede any
requirement stated within the SOAP specification, but rather to outline how the configuration information
described above is combined to satisfy the SOAP requirements:

1. Obtain the set of SOAP roles for the current binding instance. This is returned bySOAPBinding-
.getRoles.

2. Obtain the set ofHandlers deployed on the current binding instance. This is obtainedvia Binding-
.getHandlerChain.

3. Identify the set of header qualified names (QNames) that the binding instance understands. This is
the set of all headerQNames that satisfy at least one of the following conditions:

(a) that are mapped to method parameters in the service endpoint interface;

(b) are members ofSOAPHandler.getHeaders() for eachSOAPHandler in the set obtained in
step 2;

(c) are directly supported by the binding instance.

4. Identify the set of must understand headers in the inboundmessage that are targeted at this node. This
is the set of all headers with amustUnderstand attribute whose value is1 or true and anactor
or role attribute whose value is in the set obtained in step 1.

5. For each header in the set obtained in step 4, the header is understood if its QName is in the set
identified in step 3.

6. If every header in the set obtained in step 4 is understood,then the node understands how to process
the message. Otherwise the node does not understand how to process the message.

7. If the node does not understand how to process the message,then neither handlers nor the endpoint
are invoked and instead the binding generates a SOAP must understand exception. Subsequent actions
depend on whether the message exchange pattern (MEP) in use requires a response to the message
currently being processed or not:

April 19, 2006 JAX-WS 2.0 117

Chapter 10. SOAP Binding

ResponseThe message direction is reversed and the binding dispatches the SOAP must understand
exception (see section 10.2.2).

No responseThe binding dispatches the SOAP must understand exception (see section 10.2.2).

10.2.2 Exception Handling

The following subsections describe SOAP specific requirements for handling exceptions thrown by handlers
and service endpoint implementations.

10.2.2.1 Handler Exceptions

A binding is responsible for catching runtime exceptions thrown by handlers and following the processing
model described in section 9.3.2. A binding is responsible for converting the exception to a fault message
subject to further handler processing if the following criteria are met:

1. A handler throws aProtocolException from handleMessage

2. The MEP in use includes a response to the message being processed

3. The current message is not already a fault message (the handler might have undertaken the work prior
to throwing the exception).

If the above criteria are met then the exception is convertedto a SOAP fault message as follows:

• If the exception is an instance ofSOAPFaultException then the fields of the contained SAAJ
SOAPFault are serialized to a new SOAP fault message, see section 10.2.2.3. The current message
is replaced by the new SOAP fault message.

• If the exception is of any other type then a new SOAP fault message is created to reflect a server class
of error for SOAP 1.1[2] or a receiver class of error for SOAP 1.2[3].

• Handler processing is resumed as described in section 9.3.2.

If the criteria for converting the exception to a fault message subject to further handler processing are not
met then the exception is handled as follows depending on thecurrent message direction:

Outbound A new SOAP fault message is created to reflect a server class oferror for SOAP 1.1[2] or a
receiver class of error for SOAP 1.2[3] and the message is dispatched.

Inbound The exception is passed to the binding provider.

10.2.2.2 Service Endpoint Exceptions

Service endpoints can throw service specific exceptions orruntime exceptions. In both cases they can
provide protocol specific information using the cause mechanism, see section 6.4.1.

A server side implementation of the SOAP binding is responsible for catching exceptions thrown by a service
endpoint implementation and, if the message exchange pattern in use includes a response to the message that
caused the exception, converting such exceptions to SOAP fault messages and invoking thehandleFault
method on handlers for the fault message as described in section 9.3.2.

Section 10.2.2.3 describes the rules for mapping an exception to a SOAP fault.

118 JAX-WS 2.0 April 19, 2006

10.3. SOAP Message Context

10.2.2.3 Mapping Exceptions to SOAP Faults

When mapping an exception to a SOAP fault, the fields of the fault message are populated according to the
following rules of precedence:

• faultcode (Subcode in SOAP 1.2,Code set toenv:Receiver)

1. SOAPFaultException.getFault().getFaultCodeAsQName()1

2. env:Server (Subcode omitted for SOAP 1.2).

• faultstring (Reason/Text

1. SOAPFaultException.getFault().getFaultString()1

2. Exception.getMessage()

3. Exception.toString()

• faultactor (Role in SOAP 1.2)

1. SOAPFaultException.getFault().getFaultActor()1

2. Empty

• detail (Detail in SOAP 1.2)

1. Serialized service specific exception (seeWrapperException.getFaultInfo() in section 2.5)

2. SOAPFaultException.getFault().getDetail()1

10.3 SOAP Message Context

SOAP handlers are passed aSOAPMessageContext when invoked. SOAPMessageContext extends
MessageContext with methods to obtain and modify the SOAP message payload.

10.4 SOAP Transport and Transfer Bindings

SOAP[2, 4] can be bound to multiple transport or transfer protocols. This section describes requirements
pertaining to the supported protocols for use with SOAP.

10.4.1 HTTP

The SOAP 1.1 HTTP binding is identified by the URLhttp://schemas.xmlsoap.org/wsdl/soap/http,
which is also the value of the constantjavax.xml.ws.soap.SOAPBinding.SOAP11HTTP BINDING.

♦ Conformance (SOAP 1.1 HTTP Binding Support):An implementation MUST support the HTTP bind-
ing of SOAP 1.1[2] and SOAP With Attachments[31] as clarified by the WS-I Basic Profile[17], WS-I
Simple SOAP Binding Profile[26] and WS-I Attachment Profile[27].

1If the exception is aSOAPFaultException or has a cause that is aSOAPFaultException.

April 19, 2006 JAX-WS 2.0 119

Chapter 10. SOAP Binding

The SOAP 1.2 HTTP binding is identified by the URLhttp://www.w3.org/2003/05/soap/bindings/HTTP/,
which is also the value of the constantjavax.xml.ws.soap.SOAPBinding.SOAP12HTTP BINDING.

♦ Conformance (SOAP 1.2 HTTP Binding Support):An implementation MUST support the HTTP bind-
ing of SOAP 1.2[4].

10.4.1.1 MTOM

♦ Conformance (SOAP MTOM Support):An implementation MUST support MTOM[24]1.

SOAPBinding defines a property (in the JavaBeans sense) calledMTOMEnabled that can be used to control
the use of MTOM. ThegetMTOMEnabled method is used to query the current value of the property. The
setMTOMEnabled method is used to change the value of the property so as to enable or disable the use of
MTOM.

♦ Conformance (Semantics of MTOM enabled):When MTOM is enabled, a receiver MUST accept both
non-optimized and optimized messages, and a sender MAY sendan optimized message, non-optimized
messages being also acceptable.

The heuristics used by a sender to determine whether to use optimization or not are implementation-specific.

♦ Conformance (MTOM support):PredefinedSOAPBinding instances MUST support enabling/disabling
MTOM support using thesetMTOMenabled method.

♦ Conformance (SOAP bindings with MTOM disabled):The bindings corresponding to the following IDs:

javax.xml.ws.soap.SOAPBinding.SOAP11HTTP BINDING

javax.xml.ws.soap.SOAPBinding.SOAP12HTTP BINDING

MUST have MTOM disabled by default.

For convenience, this specification defines two additional binding identifiers for SOAP 1.1 and SOAP 1.2
over HTTP with MTOM enabled.

The URL of the former ishttp://schemas.xmlsoap.org/wsdl/soap/http?mtom=trueand its predef-
ined constantjavax.xml.ws.soap.SOAPBinding.SOAP11HTTP MTOM BINDING.

The URL of the latter ishttp://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=true and its
predefined constantjavax.xml.ws.soap.SOAPBinding.SOAP12HTTP MTOM BINDING.

♦ Conformance (SOAP bindings with MTOM enabled):The bindings corresponding to the following IDs:

javax.xml.ws.soap.SOAPBinding.SOAP11HTTP MTOM BINDING

javax.xml.ws.soap.SOAPBinding.SOAP12HTTP MTOM BINDING

MUST have MTOM enabled by default.

♦ Conformance (MTOM on Other SOAP Bindings):Other bindings that extendSOAPBindingMAY NOT
support changing the value of theMTOMEnabled property. In this case, if an application attempts to change
its value, an implementation MUST throw aWebServiceException.

1JAX-WS inherits the JAXB support for the SOAP MTOM[24]/XOP[25] mechanism for optimizing transmission of binary data
types, see section 2.4.

120 JAX-WS 2.0 April 19, 2006

10.4. SOAP Transport and Transfer Bindings

10.4.1.2 One-way Operations

HTTP interactions are request-response in nature. When using HTTP as the transfer protocol for a one-way
SOAP message, implementations wait for the HTTP response even though there is no SOAP message in the
HTTP response entity body.

♦ Conformance (One-way operations):When invoking one-way operations, an implementation of theSOAP-
/HTTP binding MUST block until the HTTP response is receivedor an error occurs.

Note that completion of the HTTP request simply means that the transmission of the request is complete,
not that the request was accepted or processed.

10.4.1.3 Security

Section 4.2.1.1 defines two standard context properties (javax.xml.ws.security.auth.username

and javax.xml.ws.security.auth.password) that may be used to configure authentication infor-
mation.

♦ Conformance (HTTP basic authentication support):An implementation of the SOAP/HTTP binding MUST
support HTTP basic authentication.

♦ Conformance (Authentication properties):A client side implementation MUST support use of the the
standard propertiesjavax.xml.ws.security.auth.usernameandjavax.xml.ws.security.auth-
.password to configure HTTP basic authentication.

10.4.1.4 Session Management

Section 4.2.1.1 defines a standard context property (javax.xml.ws.session.maintain) that may be
used to control whether a client side runtime will join a session initiated by a service.

A SOAP/HTTP binding implementation can use three HTTP mechanisms for session management:

Cookies To initiate a session a service includes a cookie in a messagesent to a client. The client stores the
cookie and returns it in subsequest messages to the service.

URL rewriting To initiate a session a service directs a client to a new URL for subsequent interactions.
The new URL contains an encoded session identifier.

SSL The SSL session ID is used to track a session.

R1120 in WS-I Basic Profile 1.1[17] allows a service to use HTTP cookies. However, R1121 recommends
that a service should not rely on use of cookies for state management.

♦ Conformance (URL rewriting support):An implementation MUST support use of HTTP URL rewriting
for state management.

♦ Conformance (Cookie support):An implementation SHOULD support use of HTTP cookies for state
management.

♦ Conformance (SSL session support):An implementation MAY support use of SSL session based state
management.

April 19, 2006 JAX-WS 2.0 121

Chapter 10. SOAP Binding

122 JAX-WS 2.0 April 19, 2006

Chapter 11

HTTP Binding

This chapter describes the JAX-WS XML/HTTP binding. The JAX-WS XML/HTTP binding provides
“raw” XML over HTTP messaging capabilities as used in many Web services today.

11.1 Configuration

The XML/HTTP binding is identified by the URLhttp://www.w3.org/2004/08/wsdl/http, which
is also the value of the constantjavax.xml.ws.http.HTTPBinding.HTTP BINDING.

♦ Conformance (XML/HTTP Binding Support):An implementation MUST support the XML/HTTP bind-
ing.

An XML/HTTP binding instance allows HTTP-specific configuration in addition to that described in section
9.2. The additional information can be configured either programmatically or using deployment metadata.
The following subsections describe each form of configuration.

11.1.1 Programmatic Configuration

JAX-WS only defines APIs for programmatic configuration ofclient side XML/HTTP bindings – server
side bindings are expected to be configured using deployment metadata.

11.1.1.1 HTTP Handlers

The handler chain for an XML/HTTP binding is configured as described in section 9.2.1. The handler chain
may contain handlers of the following types:

Logical Logical handlers are handlers that implementjavax.xml.ws.handler.LogicalHandler ei-
ther directly or indirectly. Logical handlers have access to the entire XML message via the logical
message context.

Use ofjavax.xml.ws.binding.attachments.outbound property in Dispatch

• When usingDispatch in XML / HTTP binding in payload mode, attachments specifiedusing the
javax.xml.ws.binding.attachments.outbound property will be included as mime attach-
ments to the message.

April 19, 2006 JAX-WS 2.0 123

Chapter 11. HTTP Binding

• When usingDispatch in XML / HTTP binding in message mode, thejavax.xml.ws.binding-
.attachments.outbound property will be ignored.Dispatch of type DataSource should be
used to send mime attachments for the XML / HTTP binding in message mode.

♦ Conformance (Incompatible handlers):An implementation MUST throwWebServiceExceptionwhen,
at the time a binding provider is created, the handler chain returned by the configuredHandlerResolver
contains an incompatible handler.

♦ Conformance (Incompatible handlers):Implementations MUST throw aWebServiceExceptionwhen
attempting to configure an incompatible handler usingBinding.setHandlerChain.

♦ Conformance (Logical handler access):An implementation MUST allow access to the entire XML mes-
sage via a logical message context.

11.1.2 Deployment Model

JAX-WS defines no standard deployment model for handlers. Such a model is provided by JSR 109[14]
“Implementing Enterprise Web Services”.

11.2 Processing Model

The XML/HTTP binding implements the general handler framework processing model described in section
9.3.

11.2.1 Exception Handling

The following subsections describe HTTP specific requirements for handling exceptions thrown by handlers
and service endpoint implementations.

11.2.1.1 Handler Exceptions

A binding is responsible for catching runtime exceptions thrown by handlers and following the processing
model described in section 9.3.2. A binding is responsible for converting the exception to a fault message
subject to further handler processing if the following criteria are met:

1. A handler throws aProtocolException from handleMessage

2. The MEP in use includes a response to the message being processed

3. The current message is not already a fault message (the handler might have undertaken the work prior
to throwing the exception).

If the above criteria are met then the exception is convertedto a HTTP response message as follows:

• If the exception is an instance ofHTTPException then the HTTP response code is set according to
the value of thestatusCode property. Any current XML message content is removed.

124 JAX-WS 2.0 April 19, 2006

11.3. HTTP Support

• If the exception is of any other type then the HTTP status code is set to 500 to reflect a server class of
error and any current XML message content is removed.

• Handler processing is resumed as described in section 9.3.2.

If the criteria for converting the exception to a fault message subject to further handler processing are not
met then the exception is handled as follows depending on thecurrent message direction:

Outbound The HTTP status code is set to 500 to reflect a server class of error, any current XML message
content is removed and the message is dispatched.

Inbound The exception is passed to the binding provider.

11.2.1.2 Service Endpoint Exceptions

Service endpoints can throw service specific exceptions orruntime exceptions. In both cases they can
provide protocol specific information using the cause mechanism, see section 6.4.1.

A server side implementation of the XML/HTTP binding is responsible for catching exceptions thrown by
a service endpoint implementation and, if the message exchange pattern in use includes a response to the
message that caused the exception, converting such exceptions to HTTP response messages and invoking
thehandleFault method on handlers for the response message as described in section 9.3.2.

Section 11.2.1.3 describes the rules for mapping an exception to a HTTP status code.

11.2.1.3 Mapping Exceptions to a HTTP Status Code

When mapping an exception to a HTTP status code, the status code of the HTTP fault message is populated
according to the following rules of precedence:

1. HTTPException.getStatusCode()1

2. 500.

11.3 HTTP Support

11.3.1 One-way Operations

HTTP interactions are request-response in nature. When used for one-way messages, implementations wait
for the HTTP response even though there is no XML message in the HTTP response entity body.

♦ Conformance (One-way operations):When invoking one-way operations, an implementation of theXML-
/HTTP binding MUST block until the HTTP response is receivedor an error occurs.

Note that completion of the HTTP request simply means that the transmission of the request is complete,
not that the request was accepted or processed.

1If the exception is aHTTPException or has a cause that is aHTTPException.

April 19, 2006 JAX-WS 2.0 125

Chapter 11. HTTP Binding

11.3.2 Security

Section 4.2.1.1 defines two standard context properties (javax.xml.ws.security.auth.username

and javax.xml.ws.security.auth.password) that may be used to configure authentication infor-
mation.

♦ Conformance (HTTP basic authentication support):An implementation of the XML/HTTP binding MUST
support HTTP basic authentication.

♦ Conformance (Authentication properties):A client side implementation MUST support use of the the
standard propertiesjavax.xml.ws.security.auth.usernameandjavax.xml.ws.security.auth-
.password to configure HTTP basic authentication.

11.3.3 Session Management

Section 4.2.1.1 defines a standard context property (javax.xml.ws.session.maintain) that may be
used to control whether a client side runtime will join a session initiated by a service.

A XML/HTTP binding implementation can use three HTTP mechanisms for session management:

Cookies To initiate a session a service includes a cookie in a messagesent to a client. The client stores the
cokkie and returns it in subsequest messages to the service.

URL rewriting To initiate a session a service directs a client to a new URL for subsequent interactions.
The new URL contains an encoded session identifier.

SSL The SSL session ID is used to track a session.

♦ Conformance (URL rewriting support):An implementation MUST support use of HTTP URL rewriting
for state management.

♦ Conformance (Cookie support):An implementation SHOULD support use of HTTP cookies for state
management.

♦ Conformance (SSL session support):An implementation MAY support use of SSL session based state
management.

126 JAX-WS 2.0 April 19, 2006

Appendix A

Conformance Requirements

2.1 WSDL 1.1 support 9

2.2 Customization required 9

2.3 Annotations on generated classes 9

2.4 Definitions mapping 9

2.5 WSDL and XML Schema import directives 10

2.6 Optional WSDL extensions 10

2.7 SEI naming 10

2.8 javax.jws.WebService required . 10

2.9 Method naming 11

2.10 javax.jws.WebMethod required . 11

2.11 Transmission primitive support 11

2.12 Usingjavax.jws.OneWay . 11

2.13 Usingjavax.jws.SOAPBinding . 11

2.14 Usingjavax.jws.WebParam . 11

2.15 Usingjavax.jws.WebResult . 11

2.16 Non-wrapped parameter naming 12

2.17 Default mapping mode 12

2.18 Disabling wrapper style 13

2.19 Wrapped parameter naming 13

2.20 Parameter name clash 13

2.21 Usingjavax.xml.ws.RequestWrapper . 13

2.22 Usingjavax.xml.ws.ResponseWrapper . 13

2.23 Use ofHolder . 16

2.24 Asynchronous mapping required 16

April 19, 2006 JAX-WS 2.0 127

Appendix A. Conformance Requirements

2.25 Asynchronous mapping option 16

2.26 Asynchronous method naming 17

2.27 Asynchronous parameter naming 17

2.28 Failed method invocation 17

2.29 Response bean naming 17

2.30 Asynchronous fault reporting 18

2.31 Asychronous fault cause 18

2.32 JAXB class mapping 20

2.33 JAXB customization use 20

2.34 JAXB customization clash 20

2.35 javax.xml.ws.WebFault required . 21

2.36 Exception naming 21

2.37 Fault equivalence 21

2.38 Fault equivalence 21

2.39 Required WSDL extensions 23

2.40 Unbound message parts 23

2.41 Duplicate headers in binding 23

2.42 Duplicate headers in message 24

2.43 Use of MIME type information 24

2.44 MIME type mismatch 26

2.45 MIME part identification 26

2.46 Service superclass required 26

2.47 Service class naming 26

2.48 javax.xml.ws.WebServiceClient required . 26

2.49 26

2.50 26

2.51 Failed getPort Method 27

2.52 javax.xml.ws.WebEndpoint required . 27

3.1 WSDL 1.1 support 29

3.2 Standard annotations 29

3.3 Java identifier mapping 29

3.4 Method name disambiguation 29

3.5 Package name mapping 30

3.6 WSDL and XML Schema import directives 30

128 JAX-WS 2.0 April 19, 2006

3.7 Class mapping 30

3.8 portType naming 31

3.9 Inheritance flattening 31

3.10 Inherited interface mapping 31

3.11 Operation naming 31

3.12 One-way mapping 32

3.13 One-way mapping errors 32

3.14 Parameter classification 35

3.15 Parameter naming 35

3.16 Result naming 35

3.17 Header mapping of parameters and results 35

3.18 Default wrapper bean names 36

3.19 Default wrapper bean package 36

3.20 Wrapper element names 36

3.21 Wrapper bean name clash 36

3.22 Null Values in rpc/literal 39

3.23 Exception naming 39

3.24 Fault bean name clash 40

3.25 Binding selection 40

3.26 SOAP binding support 44

3.27 SOAP binding style required 45

3.28 Service creation 45

3.29 Port selection 45

3.30 Port binding 45

4.1 Service completeness 49

4.2 Service Creation Failure 50

4.3 Use of Executor 52

4.4 Default Executor 52

4.5 Message context decoupling 53

4.6 RequiredBindingProvider properties . 54

4.7 OptionalBindingProvider properties . 54

4.8 Additional context properties 54

4.9 Asynchronous response context 55

4.10 Proxy support 55

April 19, 2006 JAX-WS 2.0 129

Appendix A. Conformance Requirements

4.11 ImplementingBindingProvider . 55

4.12 Service.getPort failure . 55

4.13 Remote Exceptions 56

4.14 Exceptions During Handler Processing 56

4.15 Other Exceptions 56

4.16 Dispatch support . 56

4.17 FailedDispatch.invoke . 58

4.18 FailedDispatch.invokeAsync . 58

4.19 FailedDispatch.invokeOneWay . 58

4.20 Reporting asynchronous errors 59

4.21 Marshalling failure 59

4.22 Use of the Catalog 61

5.1 Provider support required 63

5.2 Provider default constructor 63

5.3 Provider implementation 63

5.4 WebServiceProvider annotation 63

5.5 Endpoint publish(String address, Object implementor)Method 66

5.6 Default Endpoint Binding 66

5.7 Other Bindings 66

5.8 Publishing over HTTP 67

5.9 WSDL Publishing 67

5.10 CheckingpublishEndpoint Permission . 68

5.11 Required Metadata Types 68

5.12 Unknown Metadata 68

5.13 Use of Executor 72

5.14 Default Executor 73

6.1 Read-only handler chains 75

6.2 Concretejavax.xml.ws.spi.Provider required . 75

6.3 Provider createAndPublishEndpoint Method 76

6.4 Concretejavax.xml.ws.spi.ServiceDelegate required 77

6.5 Protocol specific fault generation 77

6.6 Protocol specific fault consumption 78

6.7 One-way operations 78

7.1 Correctness of annotations 79

130 JAX-WS 2.0 April 19, 2006

7.2 Handling incorrect annotations 79

7.3 WebServiceProvider and WebService 82

7.4 JSR-181 conformance 85

8.1 Standard binding declarations 89

8.2 Binding language extensibility 89

8.3 Multiple binding files 92

9.1 Handler framework support 101

9.2 Logical handler support 102

9.3 Other handler support 102

9.4 Incompatible handlers 103

9.5 Incompatible handlers 103

9.6 Handler chain snapshot 104

9.7 HandlerChain annotation 105

9.8 Handler resolver for a HandlerChain annotation 105

9.9 Binding handler manipulation 106

9.10 Handler initialization 107

9.11 Handler destruction 107

9.12 Invokingclose . 109

9.13 Order ofclose invocations . 109

9.14 Message context property scope 110

10.1 SOAP required roles 115

10.2 SOAP required roles 116

10.3 Default role visibility 116

10.4 Default role persistence 116

10.5 None role error 116

10.6 Incompatible handlers 116

10.7 Incompatible handlers 116

10.8 Logical handler access 116

10.9 SOAP 1.1 HTTP Binding Support 119

10.10SOAP 1.2 HTTP Binding Support 120

10.11SOAP MTOM Support 120

10.12Semantics of MTOM enabled 120

10.13MTOM support 120

10.14SOAP bindings with MTOM disabled 120

April 19, 2006 JAX-WS 2.0 131

Appendix A. Conformance Requirements

10.15SOAP bindings with MTOM enabled 120

10.16MTOM on Other SOAP Bindings 120

10.17One-way operations 121

10.18HTTP basic authentication support 121

10.19Authentication properties 121

10.20URL rewriting support 121

10.21Cookie support 121

10.22SSL session support 121

11.1 XML/HTTP Binding Support 123

11.2 Incompatible handlers 124

11.3 Incompatible handlers 124

11.4 Logical handler access 124

11.5 One-way operations 125

11.6 HTTP basic authentication support 126

11.7 Authentication properties 126

11.8 URL rewriting support 126

11.9 Cookie support 126

11.10SSL session support 126

132 JAX-WS 2.0 April 19, 2006

Bibliography

[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup Language
(XML) 1.0 (Second Edition). Recommendation, W3C, October 2000. See
http://www.w3.org/TR/2000/REC-xml-20001006.

[2] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Nielsen,
Satish Thatte, and Dave Winer. Simple Object Access Protocol (SOAP) 1.1. Note, W3C, May 2000.
See http://www.w3.org/TR/SOAP/.

[3] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk Nielsen.
SOAP Version 1.2 Part 1: Messaging Framework. Recommendation, W3C, June 2003. See
http://www.w3.org/TR/2003/REC-soap12-part1-20030624.

[4] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk Nielsen.
SOAP Version 1.2 Part 2: Adjuncts. Recommendation, W3C, June 2003. See
http://www.w3.org/TR/2003/REC-soap12-part2-20030624.

[5] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Services
Description Language (WSDL) 1.1. Note, W3C, March 2001. See
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[6] Rahul Sharma. The Java API for XML Based RPC (JAX-RPC) 1.0. JSR, JCP, June 2002. See
http://jcp.org/en/jsr/detail?id=101.

[7] Roberto Chinnici. The Java API for XML Based RPC (JAX-RPC) 1.1. Maintenance JSR, JCP,
August 2003. See http://jcp.org/en/jsr/detail?id=101.

[8] Keith Ballinger, David Ehnebuske, Martin Gudgin, Mark Nottingham, and Prasad Yendluri. Basic
Profile Version 1.0. Final Material, WS-I, April 2004. See
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

[9] Joseph Fialli and Sekhar Vajjhala. The Java Architecture for XML Binding (JAXB). JSR, JCP,
January 2003. See http://jcp.org/en/jsr/detail?id=31.

[10] Joseph Fialli and Sekhar Vajjhala. The Java Architecture for XML Binding (JAXB) 2.0. JSR, JCP,
August 2003. See http://jcp.org/en/jsr/detail?id=222.

[11] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, Jeffrey Schlimmer, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.
Working Draft, W3C, August 2004. See http://www.w3.org/TR/2004/WD-wsdl20-20040803.

[12] Joshua Bloch. A Metadata Facility for the Java Programming Language. JSR, JCP, August 2003. See
http://jcp.org/en/jsr/detail?id=175.

April 19, 2006 JAX-WS 2.0 133

BIBLIOGRAPHY

[13] Jim Trezzo. Web Services Metadata for the Java Platform. JSR, JCP, August 2003. See
http://jcp.org/en/jsr/detail?id=181.

[14] Jim Knutson and Heather Kreger. Web Services for J2EE. JSR, JCP, September 2002. See
http://jcp.org/en/jsr/detail?id=109.

[15] Nataraj Nagaratnam. Web Services Message Security APIs. JSR, JCP, April 2002. See
http://jcp.org/en/jsr/detail?id=183.

[16] Farrukh Najmi. Java API for XML Registries 1.0 (JAXR). JSR, JCP, June 2002. See
http://www.jcp.org/en/jsr/detail?id=93.

[17] Keith Ballinger, David Ehnebuske, Chris Ferris, Martin Gudgin, Canyang Kevin Liu, Mark
Nottingham, Jorgen Thelin, and Prasad Yendluri. Basic Profile Version 1.1. Final Material, WS-I,
August 2004. See http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html.

[18] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396:Uniform Resource Identifiers (URI):
Generic Syntax. RFC, IETF, March 1997. See http://www.ietf.org/rfc/rfc2396.txt.

[19] S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF,
March 1997. See http://www.ietf.org/rfc/rfc2119.txt.

[20] John Cowan and Richard Tobin. XML Information Set. Recommendation, W3C, October 2001. See
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/.

[21] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML Schema Part 1:
Structures. Recommendation, W3C, May 2001. See
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[22] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. Recommendation, W3C, May
2001. See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[23] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification - second
edition. Book, Sun Microsystems, Inc, 2000.
http://java.sun.com/docs/books/jls/secondedition/html/j.title.doc.html.

[24] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herve Ruellan. SOAP Message
Transmission Optimization Mechanism. Recommendation, W3C, January 2005.
http://www.w3.org/TR/soap12-mtom/.

[25] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herve Ruellan. XML-binary Optimized
Packaging. Recommendation, W3C, January 2005. http://www.w3.org/TR/xop10/.

[26] Mark Nottingham. Simple SOAP Binding Profile Version 1.0. Working Group Draft, WS-I, August
2004. See http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0-2004-08-24.html.

[27] Chris Ferris, Anish Karmarkar, and Canyang Kevin Liu. Attachments Profile Version 1.0. Final
Material, WS-I, August 2004. See
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html.

[28] Norm Walsh. XML Catalogs 1.1. OASIS Committee Specification, OASIS, July 2005. See
http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html.

[29] Rajiv Mordani. Common Annotations for the Java Platform. JSR, JCP, July 2005. See
http://jcp.org/en/jsr/detail?id=250.

134 JAX-WS 2.0 April 19, 2006

BIBLIOGRAPHY

[30] Bill Shannon. Java Platform Enterprise Edition 5 Specification. JSR, JCP, August 2005. See
http://jcp.org/en/jsr/detail?id=244.

[31] John Barton, Satish Thatte, and Henrik Frystyk Nielsen. SOAP Messages With Attachments. Note,
W3C, December 2000. http://www.w3.org/TR/SOAP-attachments.

April 19, 2006 JAX-WS 2.0 135

	1 Introduction
	1.1 Goals
	1.2 Non-Goals
	1.3 Requirements
	1.3.1 Relationship To JAXB
	1.3.2 Standardized WSDL Mapping
	1.3.3 Customizable WSDL Mapping
	1.3.4 Standardized Protocol Bindings
	1.3.5 Standardized Transport Bindings
	1.3.6 Standardized Handler Framework
	1.3.7 Versioning and Evolution
	1.3.8 Standardized Synchronous and Asynchronous Invocation
	1.3.9 Session Management

	1.4 Use Cases
	1.4.1 Handler Framework

	1.5 Conventions
	1.6 Expert Group Members
	1.7 Acknowledgements

	2 WSDL 1.1 to Java Mapping
	2.1 Definitions
	2.1.1 Extensibility

	2.2 Port Type
	2.3 Operation
	2.3.1 Message and Part
	2.3.2 Parameter Order and Return Type
	2.3.3 Holder Class
	2.3.4 Asynchrony

	2.4 Types
	2.5 Fault
	2.5.1 Example

	2.6 Binding
	2.6.1 General Considerations
	2.6.2 SOAP Binding
	2.6.3 MIME Binding

	2.7 Service and Port
	2.7.1 Example

	2.8 XML Names
	2.8.1 Name Collisions

	3 Java to WSDL 1.1 Mapping
	3.1 Java Names
	3.1.1 Name Collisions

	3.2 Package
	3.3 Class
	3.4 Interface
	3.4.1 Inheritance

	3.5 Method
	3.5.1 One Way Operations

	3.6 Method Parameters and Return Type
	3.6.1 Parameter and Return Type Classification
	3.6.2 Use of JAXB

	3.7 Service Specific Exception
	3.8 Bindings
	3.8.1 Interface
	3.8.2 Method and Parameters

	3.9 Generics
	3.10 SOAP HTTP Binding
	3.10.1 Interface
	3.10.2 Method and Parameters

	3.11 Service and Ports

	4 Client APIs
	4.1 javax.xml.ws.Service
	4.1.1 Service Usage
	4.1.2 Provider and Service Delegate
	4.1.3 Handler Resolver
	4.1.4 Executor

	4.2 javax.xml.ws.BindingProvider
	4.2.1 Configuration
	4.2.2 Asynchronous Operations
	4.2.3 Proxies
	4.2.4 Exceptions

	4.3 javax.xml.ws.Dispatch
	4.3.1 Configuration
	4.3.2 Operation Invocation
	4.3.3 Asynchronous Response
	4.3.4 Using JAXB
	4.3.5 Examples

	4.4 Catalog Facility

	5 Service APIs
	5.1 javax.xml.ws.Provider
	5.1.1 Invocation
	5.1.2 Configuration
	5.1.3 Examples

	5.2 javax.xml.ws.Endpoint
	5.2.1 Endpoint Usage
	5.2.2 Publishing
	5.2.3 Publishing Permission
	5.2.4 Endpoint Metadata
	5.2.5 Determining the Contract for an Endpoint
	5.2.6 Endpoint Properties
	5.2.7 Executor

	5.3 javax.xml.ws.WebServiceContext
	5.3.1 MessageContext

	6 Core APIs
	6.1 javax.xml.ws.Binding
	6.2 javax.xml.ws.spi.Provider
	6.2.1 Configuration
	6.2.2 Creating Endpoint Objects
	6.2.3 Creating ServiceDelegate Objects

	6.3 javax.xml.ws.spi.ServiceDelegate
	6.4 Exceptions
	6.4.1 Protocol Specific Exception Handling
	6.4.2 One-way Operations

	7 Annotations
	7.1 javax.xml.ws.ServiceMode
	7.2 javax.xml.ws.WebFault
	7.3 javax.xml.ws.RequestWrapper
	7.4 javax.xml.ws.ResponseWrapper
	7.5 javax.xml.ws.WebServiceClient
	7.6 javax.xml.ws.WebEndpoint
	7.6.1 Example

	7.7 javax.xml.ws.WebServiceProvider
	7.8 javax.xml.ws.BindingType
	7.9 javax.xml.ws.WebServiceRef
	7.9.1 Example

	7.10 javax.xml.ws.WebServiceRefs
	7.10.1 Example

	7.11 Annotations Defined by JSR-181
	7.11.1 javax.jws.WebService
	7.11.2 javax.jws.WebMethod
	7.11.3 javax.jws.OneWay
	7.11.4 javax.jws.WebParam
	7.11.5 javax.jws.WebResult
	7.11.6 javax.jws.SOAPBinding
	7.11.7 javax.jws.HandlerChain

	8 Customizations
	8.1 Binding Language
	8.2 Binding Declaration Container
	8.3 Embedded Binding Declarations
	8.3.1 Example

	8.4 External Binding File
	8.4.1 Example

	8.5 Using JAXB Binding Declarations
	8.6 Scoping of Bindings
	8.7 Standard Binding Declarations
	8.7.1 Definitions
	8.7.2 PortType
	8.7.3 PortType Operation
	8.7.4 PortType Fault Message
	8.7.5 Binding
	8.7.6 Binding Operation
	8.7.7 Service
	8.7.8 Port

	9 Handler Framework
	9.1 Architecture
	9.1.1 Types of Handler
	9.1.2 Binding Responsibilities

	9.2 Configuration
	9.2.1 Programmatic Configuration
	9.2.2 Deployment Model

	9.3 Processing Model
	9.3.1 Handler Lifecycle
	9.3.2 Handler Execution
	9.3.3 Handler Implementation Considerations

	9.4 Message Context
	9.4.1 javax.xml.ws.handler.MessageContext
	9.4.2 javax.xml.ws.handler.LogicalMessageContext
	9.4.3 Relationship to Application Contexts

	10 SOAP Binding
	10.1 Configuration
	10.1.1 Programmatic Configuration
	10.1.2 Deployment Model

	10.2 Processing Model
	10.2.1 SOAP mustUnderstand Processing
	10.2.2 Exception Handling

	10.3 SOAP Message Context
	10.4 SOAP Transport and Transfer Bindings
	10.4.1 HTTP

	11 HTTP Binding
	11.1 Configuration
	11.1.1 Programmatic Configuration
	11.1.2 Deployment Model

	11.2 Processing Model
	11.2.1 Exception Handling

	11.3 HTTP Support
	11.3.1 One-way Operations
	11.3.2 Security
	11.3.3 Session Management

	A Conformance Requirements
	Bibliography

