The Java API for XML-Based Web
Services
(JAX-WS) 2.0

Final Release
April 19, 2006

Editors:
Roberto Chinnici
Marc Hadley
Rajiv Mordani

Comments to: jsr224-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054 USA

JAX-WS 2.0

April 19, 2006

Specification: JISR-000224 - Java™API for XML-Based Web Seiiees (“Specification”)
Version: 2.0
Status: Final Release

Release: 19 April 2006

Copyright 2006 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation PurposeSun hereby grants you a fully-paid, non-exclusive, namgferable, worldwide,
limited license (without the right to sublicense), undenSwapplicable intellectual property rights to view, dowatl,

use and reproduce the Specification only for the purposeteirial evaluation. This includes (i) developing appli-
cations intended to run on an implementation of the Spetificaprovided that such applications do not themselves
implement any portion(s) of the Specification, and (ii) dssing the Specification with any third party; and (iii) ex-
cerpting brief portions of the Specification in oral or weiitcommunications which discuss the Specification provided
that such excerpts do not in the aggregate constitute disegmi portion of the Specification.

2. License for the Distribution of Compliant Implementatio Sun also grants you a perpetual, non-exclusive, non-
transferable, worldwide, fully paid-up, royalty free, lbed license (without the right to sublicense) under anyliapp

ble copyrights or, subject to the provisions of subsectitweldw, patent rights it may have covering the Specification
to create and/or distribute an Independent Implementatidine Specification that: (a) fully implements the Specifi-
cation including all its required interfaces and functiitya(b) does not modify, subset, superset or otherwise okt

the Licensor Name Space, or include any public or protectexkames, classes, Java interfaces, fields or methods
within the Licensor Name Space other than those requirdtgaiaed by the Specification or Specifications being
implemented; and (c) passes the Technology Compatibilityikcluding satisfying the requirements of the appli-
cable TCK Users Guide) for such Specification (“Complianplementation”). In addition, the foregoing license is
expressly conditioned on your not acting outside its scdge.license is granted hereunder for any other purpose
(including, for example, modifying the Specification, atligan to the extent of your fair use rights, or distributing
the Specification to third parties). Also, no right, title, interest in or to any trademarks, service marks, or trade
names of Sun or Sun’s licensors is granted hereunder. Jatdaaa-related logos, marks and names are trademarks
or registered trademarks of Sun Microsystems, Inc. in ti& &ind other countries.

3. Pass-through Condition¥ou need not include limitations (a)-(c) from the previgagagraph or any other partic-
ular “pass through”requirements in any license You granteoning the use of your Independent Implementation or
products derived from it. However, except with respect ejmendent Implementations (and products derived from
them) that satisfy limitations (a)-(c) from the previousggraph, You may neither: (a) grant or otherwise pass throug
to your licensees any licenses under Sun’s applicabldéctahl property rights; nor (b) authorize your license®es t
make any claims concerning their implementation’s conmgiéawith the Specification in question.

4. Reciprocity Concerning Patent Licenses

a. With respect to any patent claims covered by the liceresetgd under subparagraph 2 above that would be infringed
by all technically feasible implementations of the Speaiiizn, such license is conditioned upon your offering on
fair, reasonable and non-discriminatory terms, to anyypseeking it from You, a perpetual, non-exclusive, non-
transferable, worldwide license under Your patent rightticlv are or would be infringed by all technically feasible
implementations of the Specification to develop, distetarid use a Compliant Implementation.

b With respect to any patent claims owned by Sun and coveréigeblycense granted under subparagraph 2, whether
or not their infringement can be avoided in a technicallysfiele manner when implementing the Specification, such

license shall terminate with respect to such claims if Yatidte a claim against Sun that it has, in the course of

performing its responsibilities as the Specification Léaduced any other entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and eavby the license granted under subparagraph 2
above, where the infringement of such claims can be avoidedtechnically feasible manner when implementing

April 19, 2006 JAX-WS 2.0 iii

the Specification such license, with respect to such clasimal] terminate if You initiate a claim against Sun that its
making, having made, using, offering to sell, selling or arti;ng a Compliant Implementation infringes Your patent
rights.

5. Definitions For the purposes of this Agreement: “Independent Impldatem”shall mean an implementation
of the Specification that neither derives from any of Sunisree code or binary code materials nor, except with an
appropriate and separate license from Sun, includes anycs Source code or binary code materials; “Licensor Name
Space”shall mean the public class or interface declaratidmose names begin with “java”, “javax”, “com.sun”or
their equivalents in any subsequent naming conventionteddgy Sun through the Java Community Process, or any
recognized successors or replacements thereof; and “@eghnCompatibility Kit"or “TCK”shall mean the test suite
and accompanying TCK User’s Guide provided by Sun whichesponds to the Specification and that was available
either (i) from Sun’s 120 days before the first release of Yimalependent Implementation that allows its use for
commercial purposes, or (ii) more recently than 120 daysifsach release but against which You elect to test Your

implementation of the Specification.

This Agreement will terminate immediately without notigerh Sun if you breach the Agreement or act outside the
scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS IS”. SUN MAKES NO REPRESHNTIONS OR WARRANTIES, EI-
THER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRATIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENTNCLUDING AS A CONSEQUENCE
OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), ORHAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This documemted not represent any commitment to
release or implement any portion of the Specification in amdpct. In addition, the Specification could include
technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITSLICENSORS BE LIABLE
FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVEDAMAGES, HOWEVER CAUSED
AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RLATED IN ANY WAY TO
YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE SPECIFICAON, EVEN IF SUN AND/OR
ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH IMAGES.

You will indemnify, hold harmless, and defend Sun and iterigors from any claims arising or resulting from: (i) your
use of the Specification; (ii) the use or distribution of ydava application, applet and/or implementation; andijr (i
any claims that later versions or releases of any Speciicétirnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by behalf of the U.S. Government or by a U.S. Gov-
ernment prime contractor or subcontractor (at any tiegntthe Government'’s rights in the Software and accompa-
nying documentation shall be only as set forth in this liegrikis is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitiarg] with 48 C.F.R. 2.101 and 12.212 (for non-DoD ac-
quisitions).

REPORT

If you provide Sun with any comments or suggestions conogrttie Specification (“Feedback”), you hereby: (i)
agree that such Feedback is provided on a non-proprietamamn-confidential basis, and (ii) grant Sun a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocableditse, with the right to sublicense through multiple levéls o
sublicensees, to incorporate, disclose, and use withoitalion the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by foafiia law and controlling U.S. federal law. The U.N.
Convention for the International Sale of Goods and the @hofdaw rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws amy ime subject to export or import regulations in other

v JAX-WS 2.0 April 19, 2006

countries. Licensee agrees to comply strictly with all slesks and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-ekpoimport as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relatinigstsubject matter. It supersedes all prior or contempo-
raneous oral or written communications, proposals, cardif representations and warranties and prevails over any
conflicting or additional terms of any quote, order, ackremigment, or other communication between the parties
relating to its subject matter during the term of this Agream No modification to this Agreement will be binding,
unless in writing and signed by an authorized represemtafieach party.

Rev. April, 2006
Sun/Final/Full

April 19, 2006 JAX-WS 2.0 v

Vi

JAX-WS 2.0

April 19, 2006

Document Status

This section describes the status of this document at the éifrits publication. Other documents may
supersede this document; the latest revision of this donticen be found on the JSR 224 homepage at
http://ww. jcp.org/en/jsr/detail ?i d=224. This is the Proposed Final Draft of JSR 224 (JAX-

WS 2.0). It has been produced by the JSR 224 expert group. @aisron this document are welcome,
send them t sr 224- spec- comment s@un. com

April 19, 2006 JAX-WS 2.0 vii

viii JAX-WS 2.0 April 19, 2006

Contents

[1__Introductionl 1
L1 Goak . . . oo 1
2 Non-Goals............ 3
.3 Requirements 3

.31 Relationship TOJAXB oo 3
[1.3.2 Standardized WSDL MappIng oo oot e 3
[1.3.3 Customizable WSDL Mapping o o v oot e e e 4
[1.3.4 Standardized Protocol Bindihgs 4
[1.3.5 Standardized Transport Bindings oot i e e 4
[L3.6 Standardized Handler Framedorko 4
[L.3.7 Versioningand Evolutibn 5
[1.3.8 Standardized Synchronous and Asynchronous Inwmcati 5
[1.3.9 Session Managemlent 5
[La _UseCasbs 5
[L41 Handler Framewdrk 5
L5 _Conventionso 6
1.6 Expert Group Memberso v vt 7
1.7 _Acknowledgementso 7
[2__WSDL 1.1 to Java Mapping 9
R1 Definitions 9
D11 Extensibilify 10
D2 PortTyde o 10
B3 Operatidn 10
231 Messageand Bart 11
.32 Parameter Orderand Return Type oo i i 15
233 HalderClasst 15

April 19, 2006 JAX-WS 2.0 iX

Ra Types . .. 20
BE Fault. . .., 21
P51 Example 21

6 BINAINY . . . o o e e e 23
.61 GeneralConsideratibns 23
P62 SOAPBINIAGo oo 23
P63 MIMEBINAING o oo o oo e e e 24

D7 SeniceandPbrt. 26
P71 Example 27

28 XMI Nameb 28
P81 NamecCallisiohs 28
13__Javato WSDL 1.1 Mapping 29
Bl JavaNambs 29
B11 NameColliSioNSo oo 29

B2 Packade 29
B3 Clads.o 30
Ba Interfade 31
B41 Inheritande 31

BE Metholo 31
B5.1 OneWayOperatidns 32

B.6 Method Parameters and Return Type o oo oo 32
[3.6.1 Parameter and Return Type Classifichtion 35
B62 UseofJAXB 36
B.7Z_Service Specific Exceptlon 39
B8 Bindings o o 40
BB1 Interfade 40
B.82 Methodand Paramefers. oo 41

B9 Genenids e 41
B10 SOAPHTTPBRINAING o v v o oo e e e e e e e e e e e 44
B101 Interfade 44
3.10.2 Method and Paramelers. i 45
B11 Service and POMS o vt ii 45

JAX-WS 2.0 April 19, 2006

M1 javaxxmlws.Servibe 49
M1 ServiceUsalJe oo 50
kW12 Provider and Service Deledate 51
KM1.3 Handler Resolerot 51
MIA EXECUDr . . o o oo oo 52

k.2 javaxxmlwsBindingProvider e 52
W21 Configuratidn 52
2.2 Asynchronous Operatibnso ot 54
W23 PIOXIBS . . o v oot 55
M2.4 Exceptiohs 56

b3 javaxxmlwsDispatbth 56
KM31 Configuratidn 57
W32 Operationlnvacatibn 58
U333 AsynchronousS RespolSe oo oot e 58
B34 UsingJAXB 59
B35 Examplds oo 59

M4 _Catalog Facilily o 61

l5__Service API5 63

B javaxxmlwsProvider 63
5.1 10vOocation e e e 64
B2 Configuratidn 64
B13 EXampleS oe e 64

B2 javaxxmlwsEndpolnt 65
B21 EndpointUsabe oo 65
.22 Publishidg 66
5.2.3 Publishing PErmiSSIon oo 68
B.2.4 EndpointMetaddta 68
5.2.5 _Determining the Contract for an Endglointot 68
5.2.6 Endpoint Propertieso 72
B2.7 EXECULDr . . o oo o o e 72

b.3 javax.xmlwsWebServiceConfext 73
531 MessageConteXto 74

April 19, 2006 JAX-WS 2.0 Xi

6_Core API3 75
b.1 javaxxmlwsBindidg 75
6.2 _javaxxmlws.SpiProvider 75

621 Configuratidn 76
6.2.2 Creating Endpoint Objelcts 76
l6.2.3 Creating ServiceDelegate Objects 77
6.3 javaxxmlws.spiServiceDeledate 77
.4 _Exceptiols. 77
6.4.1 Protocol Specific Exception Handling 77
6.4.2 _One-way Operatidns oo 78

[7__Annotations 79
21 _javaxxmlws.ServiceMode 79
22 javaxxmlwsWebFalilt 80
2.3 _javax.xmlLws.RequestWraperot e 80
2.4 _javaxxmlLws.ResponseWIamper oo oo e e e 81
2.5 javaxxmlwsWebServiceClibnt 81
2.6 _javaxxmlwsWebEndpoint 81

261 Example 82

2.7 _javaxxmlwsWehServiceProviler 82
7.8 javaxxmlwsBindingTyPe o v o oo 83
2.9 javaxxmlwsWebServiceRef 83
o1 Example 84
[2.10_javax.xmlwsWehSernviceRefS o v e 85
2101 Example 85

[711 Annotations Defined by JSR-181 85
[2.11.1 javaxjwsWebService 86

112 javaxjwsWebMethbd 86

113 javaxjwsOneWhy 86

[711.4 javaxjwsWebParBm 86

7115 javaxjwsWebRedult 86

[711.6 javaxjws.SOAPBindihg 87

117 javaxjwsHandlerChhin 87
I8__Customizationk 89
Xii JAX-WS 2.0 April 19, 2006

B1 Binding Languadie oot e 89
[B.2 _Binding Declaration Contaiflerot 89
8.3 _Embedded Binding Declaratibnso e 90
B31 Example 90
B4 FExternalBinding File e 90
B41 Example 92
8.5 _Using JAXB Binding Declarationso e 92
B.6 Scoping of BINAINGS . « - -« v e e e 94
8.7 _Standard Binding Declaratibnso 94
B71 Definifionls 94
BZ2 PoTyde o oo 95
B7.3 PortType Operatbn o o 96
B.7.4 PortType FAUt MESSAGE o o v oo e e 97
BZE BINdIG o oo 97
B7.6 Binding Operation 97
BZ7Z Servide 08
BZ8 Palt . . . 08
19__Handler FrameworK 101
01 Architectute 101
11 TypesofHandler 101
.12 Binding Responsibiliies 102
b2 cConfiguratidn 104
9.2.1 Programmatic Configuration 104
922 DeploymentMadel 106
0.3 ProcessingModel 106
.31 Handlerlifecyde. 106
032 Handler Executibn e 107
0.3.3 Handler Implementation Considerations oo oo 109
0.4 Message CONMEXt o oo ot 109
.41 javax.xmlws.handler MessageCoMtext wwe v e 110
9.4.2 javax.xmlws.handler| ogicalMessageCohtext . 110
[0.4.3 Relationship to Application Contdxts, 113
[10_SOAP Binding 115
April 19, 2006 JAX-WS 2.0 Xiii

[10.1.1 Programmatic Configuration 115

1012 DeploymentMadel 117

102 ProcessingMoadel 117
1021 SOARwstUnderstand Processidgo v v oo 117

1022 ExceptionHandlihg 118

[10.3 SOAP Message Conflext o oo 119

[10.4 SOAP Transport and Transfer Bindings oo i o 119

MO41 HITP . . o oo 119

[11 HTTP Binding 123

1.1 Configuratidn 123

[11.1.1 Programmatic Configuration 123

1112 DeploymentMadelo 124

[11.2 Processing Moadel 124

121 Exception Handlihg 124

D13 HITP Suppdrt o o 125

[11.3.1 One-way Operatidns o oo v v 125

M132 Securily . . . oo 126

[11.3.3 Session Managemdent 126

|A_Conformance Requirements 127

Bibliographyl 133

Xiv JAX-WS 2.0 April 19, 2006

Chapter 1

Introduction

XML[L] is a platform-independent means of representingcttired information. XML Web Services use
XML as the basis for communication between Web-based snaad clients of those services and inherit
XMLU's platform independence. SOAR|2,[3, 4] describes orehsXML based message format and “defines,
using XML technologies, an extensible messaging frameworkaining a message construct that can be
exchanged over a variety of underlying protocols.”

WSDL[H] is “an XML format for describing network services aset of endpoints operating on messages
containing either document-oriented or procedure-cegmformation.” WSDL can be considered the de-
facto service description language for XML Web Services.

JAX-RPC 1.016] defined APIs and conventions for supportRgC oriented XML Web Services in the
Java™ platform. JAX-RPC 1/1[7] added support for the WS4iB&rofile 1.0[8] to improve interoperabil-
ity between JAX-RPC implementations and with services enmnted using other technologies.

JAX-WS 2.0 (this specification) is a follow-on to JAX-RPCl1extending it as described in the following
sections.

1.1 Goals

Since the release of JAX-RPC 1.D[6], new specifications raawl versions of the standards it depends on
have been released. JAX-WS 2.0 relates to these spedifisadind standards as follows:

JAXB Due primarily to scheduling concerns, JAX-RPC 1.0 definscbivn data binding facilities. With
the release of JAXB 1.0[9] there is no reason to maintain temagate sets of XML mapping rules
in the Java™ platform. JAX-WS 2.0 will delegate data bindiaated tasks to the JAXB 2[0]110]
specification that is being developed in parallel with J®S 2.0.

JAXB 2.0[10] will add support for Java to XML mapping, additial support for less used XML
schema constructs, and provide bidirectional custonuimatif Java<= XML data binding. JAX-
WS 2.0 will allow full use of JAXB provided facilities includg binding customization and optional
schema validation.

SOAP 1.2 Whilst SOAP 1.1 is still widely deployed, it's expected tsatvices will migrate to SOAP 1[2[3,

4] now that itis a W3C Recommendation. JAX-WS 2.0 will addsonp for SOAP 1.2 whilst requiring
continued support for SOAP 1.1.

April 19, 2006 JAX-WS 2.0 1

Chapter 1. Introduction

WSDL 2.0 The W3C is expected to progress WSDL P.0[11] to Recommenlaliring the lifetime of this
JSR. JAX-WS 2.0 will add support for WSDL 2.0 whilst requginontinued support for WSDL 1.1.

Note: The expert group for the JSR decided against this goal farrtiease . We will look at adding
support in a future revision of the JAX-WS specification.

WS-I Basic Profile 1.1 JAX-RPC 1.1 added support for WS-I Basic Profile 1.0. WS-¢iB&rofile 1.1 is
expected to supersede 1.0 during the lifetime of this JSRIAXAWS 2.0 will add support for the
additional clarifications it provides.

A Metadata Facility for the Java Programming Language (JSR I5) JAX-WS 2.0 will define the use
of Java annotatioris[12] to simplify the most common develept scenarios for both clients and
servers.

Web Services Metadata for the Java Platform (JSR 181)JAX-WS 2.0 will align with and complement
the annotations defined by JSR 181[13].

Implementing Enterprise Web Services (JSR 109)The JSR 109[14] definedaxr pc- mappi ng-i nfo
deployment descriptor provides deployment time JaveVSDL mapping functionality. In conjunc-
tion with JSR 181[113], JAX-WS 2.0 will complement this mapgifunctionality with development
time Java annotations that control Ja¥aWSDL mapping.

Web Services Security (JSR 183)JAX-WS 2.0 will align with and complement the security APk&ided
by JSR 183[15].

JAX-WS 2.0 will improve support for document/message denisage:

Asynchrony JAX-WS 2.0 will add support for client side asynchronousragiens.

Non-HTTP Transports JAX-WS 2.0 will improve the separation between the XML meggstormat and
the underlying transport mechanism to simplify use of JAX6With non-HTTP transports.

Message AccessAX-WS 2.0 will simplify client and service access to the sages underlying an ex-
change.

Session ManagementJAX-RPC 1.1 session management capabilities are tied toRHJAX-WS 2.0 will
add support for message based session management.

JAX-WS 2.0 will also address issues that have arisen witkespce of implementing and using JAX-RPC
1.0:

Inclusion in J2SE JAX-WS 2.0 will prepare JAX-WS for inclusion in a future viems of J2SE. Application
portability is a key requirement and JAX-WS 2.0 will defineechanisms to produce fully portable
clients.

Handlers JAX-WS 2.0 will simplify the development of handlers andvgfovide a mechanism to allow
handlers to collaborate with service clients and serviaipeimt implementations.

Versioning and Evolution of Web ServicesJAX-WS 2.0 will describe techniques and mechanisms to ease
the burden on developers when creating new versions ofrexisérvices.

2 JAX-WS 2.0 April 19, 2006

1.2. Non-Goals

1.2 Non-Goals
The following are non-goals:

Backwards Compatibility of Binary Artifacts Binary compatibility between JAX-RPC 1.x and JAX-WS
2.0 implementation runtimes.

Pluggable data binding JAX-WS 2.0 will defer data binding to JAXBIO0]; it is not a doa provide a
plug-in API to allow other types of data binding technolagie be used in place of JAXB. However,
JAX-WS 2.0 will maintain the capability to selectively dida data binding to provide an XML based
fragment suitable for use as input to alternative data hioptitchnologies.

SOAP Encoding Support Use of the SOAP encoding is essentially deprecated in theserlices com-
munity, e.g., the WS-I Basic Profil€[8] excludes SOAP eriegd Instead, literal usage is preferred,
either in the RPC or document style.

SOAP 1.1 encoding is supported in JAX-RPC 1.0 and 1.1 butjgpart in JAX-WS 2.0 runs counter
to the goal of delegation of data binding to JAXB. Theref@gkX VS 2.0 will make support for SOAP
1.1 encoding optional and defer description of it to JAX-RRC

Support for the SOAP 1.2 Encoding[4] is optional in SOAP Ihd 8AX-WS 2.0 will not add support
for SOAP 1.2 encoding.

Backwards Compatibility of Generated Artifacts JAX-RPC 1.0 and JAXB 1.0 bind XML to Java in dif-
ferent ways. Generating source code that works with unrieatifAX-RPC 1.x client source code is
not a goal.

Support for Java versions prior to J2SE 5.0 JAX-WS 2.0 relies on many of the Java language features
added in J2SE 5.0. It is not a goal to support JAX-WS 2.0 on Jeksions prior to J2SE 5.0.

Service Registration and Discoverylt is not a goal of JAX-WS 2.0 to describe registration anaoi®ry
of services via UDDI or ebXML RR. This capability is providediependently by JAXR[16].

1.3 Requirements

1.3.1 Relationship To JAXB

JAX-WS describes the WSDL> Java mapping, but data binding is delegated to JAXB[10]. 3jmecif-
ication must clearly designate where JAXB rules apply toweDL < Java mapping without reproducing
those rules and must describe how JAXB capabilities (ehg. JAXB binding language) are incorporated

into JAX-WS. JAX-WS is required to be able to influence the BAXnding, e.g., to avoid name collisions
and to be able to control schema validation on serializadiwh deserialization.

1.3.2 Standardized WSDL Mapping

WSDL is the de-facto service description language for XMLW/&ervices. The specification must specify
a standard WSDk= Java mapping. The following versions of WSDL must be sugabrt

» WSDL 1.1/5] as clarified by the WS-I Basic Profilé[8.,117]

April 19, 2006 JAX-WS 2.0 3

Chapter 1. Introduction

The standardized WSDL mapping will describe the default WS Java mapping. The default mapping
may be overridden using customizations as described below.

1.3.3 Customizable WSDL Mapping

The specification must provide a standard way to custonfized/¥SDL < Java mapping. The following
customization methods will be specified:

Java Annotations In conjunction with JAXBI10] and JSR 181[13], the specifioa will define a set of

standard annotations that may be used in Java source figgetify the mapping from Java artifacts
to their associated WSDL components. The annotations wpibert mapping to WSDL 1.1.

WSDL Annotations In conjunction with JAXBI10] and JSR 181[13], the specifioa will define a set of
standard annotations that may be used either within WSDuumeats or as in an external form to
specify the mapping from WSDL components to their assodidssa artifacts. The annotations will
support mapping from WSDL 1.1.

The specification must describe the precedence rules gimgecombinations of the customization methods.

1.3.4 Standardized Protocol Bindings
The specification must describe standard bindings to thesing protocols:

» SOAP 1.112] as clarified by the WS-I Basic Profile[8] 17]
« SOAP 1.2[3[4]

The specification must not prevent non-standard bindioggher protocols.

1.3.5 Standardized Transport Bindings
The specification must describe standard bindings to thesing protocols:
« HTTP/1.1[18].

The specification must not prevent non-standard bindiaggher transports.

1.3.6 Standardized Handler Framework
The specification must include a standardized handlerdvemnk that describes:

Data binding for handlers The framework will offer data binding facilities to handieand will support
handlers that are decoupled from the SAAJ API.

Handler Context The framework will describe a mechanism for communicatingpprties between han-
dlers and the associated service clients and service ertdpgilementations.

Unified Response and Fault Handling Thehandl eResponse andhandl eFaul t methods will be unif-
ied and the the declarative model for handlers will be imptbv

4 JAX-WS 2.0 April 19, 2006

1.4. Use Cases

1.3.7 Versioning and Evolution

The specification must describe techniques and mechandssupport versioning of service endpoint inter-
faces. The facilities must allow new versions of an intexfacbe deployed whilst maintaining compatibility
for existing clients.

1.3.8 Standardized Synchronous and Asynchronous Invocati on

There must be a detailed description of the generated meifjodtures to support both asynchronous and
synchronous method invocation in stubs generated by JAX-Bdé# forms of invocation will support a
user configurable timeout period.

1.3.9 Session Management

The specification must describe a standard session maeagenechanism including:

Session APIsDefinition of a session interface and methods to obtain #ssien interface and initiate ses-
sions for handlers and service endpoint implementations.

HTTP based sessionsThe session management mechanism must support HTTP caolidddRL rewrit-
ing.

SOAP based sessiond he session management mechanism must support SOAP baskuh $eformation.

1.4 Use Cases

1.4.1 Handler Framework

1.4.1.1 Reliable Messaging Support

A developer wishes to add support for a reliable messagingFSf@ature to an existing service endpoint.
The support takes the form of a JAX-WS handler.

1.4.1.2 Message Logging

A developer wishes to log incoming and outgoing messagdatiranalysis, e.g., checking messages using
the WS-| testing tools.

1.4.1.3 WS-l Conformance Checking

A developer wishes to check incoming and outgoing messagesiformance to one or more WS-I profiles
at runtime.

April 19, 2006 JAX-WS 2.0 5

Chapter 1. Introduction

1.5 Conventions

The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL', ‘'SHALL NOT’, ‘SHOULD’, ‘SHOULD
NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL' in this documert are to be interpreted as described
in RFC 2119[19].

For convenience, conformance requirements are calledamtthe main text as follows:

& Conformance (Example)mplementations MUST do something.

A list of all such conformance requirements can be found peapix(4.

Java code and XML fragments are formatted as shown in flgile 1

Figure 1.1: Example Java Code
package com exanpl e. hel | o;

public class Hello {
public static void main(String args[]) {
Systemout.println("Hello Wrld");

}

NOoO b~ WNER

Non-normative notes are formatted as shown below.

Note: This is a note.

This specification uses a number of namespace prefixeaghout; they are listed in Table1.1. Note that
the choice of any namespace prefix is arbitrary and not stoadlg significant (see XML Infoset[20]).

Prefix Namespace Notes

env http://www.w3.0rg/2003/05/soap-envelope A normaML Schemdl2ill, 22] document for
the http://iwww.w3.0rg/2003/05/soap-envelope
namespace can be found at
http://www.w3.0rg/2003/05/soap-envelope.

xsd http://www.w3.0rg/2001/XMLSchema The namespace XL schemé][Zll], 22]
specification

wsdl http://schemas.xmlsoap.org/wsdl/ The namespadeedMSDL schema[5]

soap http://schemas.xmlsoap.org/wsdl/soap/ The namegiahe WSDL SOAP binding
schemal21!, 22]

jaxb http://java.sun.com/xml/ns/jaxb The namespace®fkiXB [C] specification

jaxws http://java.sun.com/xml/ns/jaxws The namespadheIAX-WS specification

Table 1.1: Prefixes and Namespaces used in this spedaificati

Namespace names of the general form ‘http://example.orghd ‘http://example.com/...” represent appli-
cation or context-dependent URIs (see RFC 2396[18]).

All parts of this specification are normative, with the egtien of examples, notes and sections explicitly
marked as ‘Non-Normative'.

6 JAX-WS 2.0 April 19, 2006

1.6. Expert Group Members

1.6 Expert Group Members

The following people have contributed to this specificatio

Chavdar Baikov (SAP AG)

Russell Butek (IBM)

Manoj Cheenath (BEA Systems)
Shih-Chang Chen (Oracle)

Claus Nyhus Christensen (Trifork)

Ugo Corda (SeeBeyond Technology Corp)
Glen Daniels (Sonic Software)

Alan Davies (SeeBeyond Technology Corp)
Thomas Diesler (JBoss, Inc.)

Jim Frost (Art Technology Group Inc)
Alastair Harwood (Cap Gemini)

Marc Hadley (Sun Microsystems, Inc.)
Kevin R. Jones (Developmentor)

Anish Karmarkar (Oracle)

Toshiyuki Kimura (NTT Data Corp)

Jim Knutson (IBM)

Doug Kohlert (Sun Microsystems, Inc)
Daniel Kulp (IONA Technologies PLC)
Sunil Kunisetty (Oracle)

Changshin Lee (Tmax Soft, Inc)

Carlo Marcoli (Cap Gemini)

Srividya Natarajan (Nokia Corporation)
Sanjay Patil (SAP AG)

Greg Pavlik (Oracle)

Bjarne Rasmussen (Novell, Inc)
Sebastien Sahuc (Intalio, Inc.)

Rahul Sharma (Motorola)

Rajiv Shivane (Pramati Technologies)
Richard Sitze (IBM)

Dennis M. Sosnoski (Sosnoski Software)
Christopher St. John (WebMethods Corporation)
Mark Stewart (ATG)

Neal Yin (BEA Systems)

Brian Zotter (BEA Systems)

1.7 Acknowledgements

Robert Bissett, Arun Gupta, Graham Hamilton, Mark Hapnéendra Kotamraju, Vivek Pandey, Santiago
Pericas-Geertsen, Eduardo Pelegri-Llopart, Rama PfeyvBaul Sandoz, Bill Shannon, and Kathy Walsh
(all from Sun Microsystems) have provided invaluable téchinnput to the JAX-WS 2.0 specification.

April 19, 2006 JAX-WS 2.0 7

Chapter 1. Introduction

8 JAX-WS 2.0 April 19, 2006

Chapter 2

WSDL 1.1 to Java Mapping

This chapter describes the mapping from WSDL 1.1 to Javas aipping is used when generating web
service interfaces for clients and endpoints from a WSDLdedcription.

{ Conformance (WSDL 1.1 support)mplementations MUST support mapping WSDL 1.1 to Java.

The following sections describe the default mapping froche&/SDL 1.1 construct to the equivalent Java
construct. In WSDL 1.1, the separation between the abspratttype definition and the binding to a
protocol is not complete. Bindings impact the mapping betw#/SDL elements used in the abstract port
type definition and Java method parameters. SeEfidn 2@ites binding dependent mappings.

An application MAY customize the mapping using embeddedlibip declarations (see sectibnl8.3) or an
external binding file (see sectibn 8.4).

& Conformance (Customization requiredinplementations MUST support customization of the WSDL
1.1 to Java mapping using the JAX-WS binding language definehaptef1B.

In order to enable annotations to be used at runtime for ndediepatching and marshalling, this specif-
ication requires generated Java classes and interfaces amrintated with the Web service annotations
described in sectidn_ZJL1. The annotations present on aajedeclass MUST faithfully reflect the informa-
tion in the WSDL document(s) that were given as input to thpmiteg process, as well as the customizations
embedded in them and those specified via any external lgjrfdes.

{ Conformance (Annotations on generated class€hg values of all the properties of all the generated
annotations MUST be consistent with the information in tbarse WSDL document and the applicable
external binding files.

2.1 Definitions

A WSDL document has a roatsdl : def i ni ti ons element. Awsdl : definitions element and its
associated ar get Nanmespace attribute is mapped to a Java package. JAXB[10] (see app@&)diefines

a standard mapping from a namespace URI to a Java package Bgndefault, this algorithm is used to
map the value of asdl : defi ni ti ons element'st ar get Nanmespace attribute to a Java package name.

< Conformance (Definitions mapping)n the absence of customizations, the Java package namejecha
from the value of awsdl : defi ni ti ons element’st ar get Namespace attribute using the algorithm def-
ined by JAXB[10].

April 19, 2006 JAX-WS 2.0 9

Chapter 2. WSDL 1.1 to Java Mapping

An application MAY customize this mapping using thexws: package binding declaration defined in
sectiol 8.71.

No specific authoring style is required for the input WSDLcdment; implementations should support
WSDL that uses the WSDL and XML Schema import directives.

& Conformance (WSDL and XML Schema import directiveljiplementations MUST support the WS-I
Basic Profile 1.1[1l7] defined mechanisms (See R2001, R280&8 R2003) for use of WSDL and XML
Schema import directives.

2.1.1 Extensibility

WSDL 1.1 allows extension elements and attributes to bedhtidaany of its constructs. JAX-WS specifies

the mapping to Java of the extensibility elements and atedefined for the SOAP and MIME bindings.

JAX-WS does not address mapping of any other extensibiléynents or attributes and does not provide
a standard extensibility framework though which such suppould be added in a standard way. Future
versions of JAX-WS might add additional support for staddaxtensions as these become available.

{ Conformance (Optional WSDL extensionddn implementation MAY support mapping of additional
WSDL extensibility elements and attributes not descrilvedAX-WS.

Note that such support may limit interoperability and agatiion portability.

2.2 Port Type

A WSDL port type is a named set of abstract operation defingti Awsdl : por t Type element is mapped
to a Java interface in the package mapped fromwdd : def i ni ti ons element (see sectidn_2.1 for a
description ofasdl : defi ni ti ons mapping). A Java interface mapped fromsadl : port Type is called

a Service Endpoint Interfacer SEI for short.

{ Conformance (SEI naming)n the absence of customizations, the name of an SEI MUSTebeetlne of
thenane attribute of the correspondingsdl : por t Type element mapped according to the rules described
in sectio Z.B.

An application MAY customize this mapping using fhaxws: cl ass binding declaration defined in section
o. (.d.
{ Conformancej(avax. j ws. WebSer vi ce required): A mapped SEI MUST be annotated with avax-

. j ws. WebSer vi ce annotation.

An SEI contains Java methods mapped fromkdl : oper at i on child elements of the corresponding
wsdl : port Type, see sectiof2 3 for further details aadl : oper at i on mapping. WSDL 1.1 does not
support port type inheritance so each generated SEI willabormethods for all operations in the corre-
sponding port type.

2.3 Operation

Eachwsdl : operati onin awsdl : port Type is mapped to a Java method in the corresponding Java ser-
vice endpoint interface.

10 JAX-WS 2.0 April 19, 2006

2.3. Operation

{ Conformance (Method naming)n the absence of customizations, the name of a mapped Jdhadne
MUST be the value of theane attribute of theasdl : oper at i on element mapped according to the rules
described in sectidn3.8.

An application MAY customize this mapping using thaxws: met hod binding declaration defined in
sectiol 8.71.

& Conformancej(avax. j ws. WebMet hod required): A mapped Java method MUST be annotated with a
j avax. j ws. WebMet hod annotation. The annotation MAY be omitted if all its propestwould have the
default values.

The WS-I Basic Profile[1I7] R2304 requires that operatiorihiww awsdl : port Type have unique values
for their name attribute so mapping of WS-I compliant WSDL descriptiondl wot generate Java inter-
faces with overloaded methods. However, for backwards eitvifity, JAX-WS supports operation name
overloading provided the overloading does not cause ctflas specified in the Java Language Specif-
ication[23]) in the mapped Java service endpoint intertieaaration.

{ Conformance (Transmission primitive supporn implementation MUST support mapping of opera-
tions that use thene- way andr equest - r esponse transmission primitives.

{ Conformance (Usingavax. j ws. OneWay): A Java method mapped from a one-way operation MUST
be annotated with pavax. j ws. OneWay annotation.

Mapping ofnoti fi cati on andsol i cit-response operations is out of scope.

2.3.1 Message and Part

Eachwsdl : oper at i on refers to one or moresdl : message elements via childvsdl : i nput, wsdl -

:out put, andwsdl : f aul t elements that describe the input, output, and fault mesdagé¢he operation
respectively. Each operation can specify one input meszage or one output message, and zero or more
fault messages.

Fault messages are mapped to application specific exospfgee sectio 2.5). The contents of input and
output messages are mapped to Java method parameterswusidifférent styles: non-wrapper style and
wrapper style. The two mapping styles are described in thenfing subsections. Note that the binding of
a port type can affect the mapping of that port type to Javasseetiol 2J6 for details.

{ Conformance (Usingavax. j ws. SOAPBi ndi ng): An SEI mapped from a port type that is bound using
the WSDL SOAP binding MUST be annotated with avax. j ws. SOAPBi ndi ng annotation describing
the choice of style, encoding and parameter style. The ationtMAY be omitted if all its properties would
have the default values (i.e. document/literal/wrapped).

& Conformance (Usingavax. j ws. WebPar am). Generated Java method parameters MUST be annotated
with aj avax. j ws. WebPar amannotation. If the style is rpc or if the style is Document #mel parameter
style is BARE then thepar t Nane element ofj avax. j ws. WebPar am MUST refer to thewsdl : part

name of the parameter.

& Conformance (Usingavax. j ws. WebResul t). Generated Java methods MUST be annotated with a
j avax. j ws. WebResul t annotation. If the style is rpc or if the style is Document #mel parameter style

is BARE then thepar t Nane element of avax. j ws. WebResul t MUST refer to theasdl : part name of

the parameter. The annotation MAY be omitted if all its pmbies would have the default values.

April 19, 2006 JAX-WS 2.0 11

Chapter 2. WSDL 1.1 to Java Mapping

2.3.1.1 Non-wrapper Style

A wsdl : nessage is composed of zero or monresdl : part elements. Message parts are classified as
follows:

i n The message part is present only in the operation’s inpusages

out The message part is present only in the operation’s outpssage.

i n/ out The message part is present in both the operation’s inpudagesand output message.

Two parts are considered equal if they have the same valugbdo nane attribute and they reference

the same global element or type. Using non-wrapper stylssage parts are mapped to Java parameters
according to their classification as follows:

i n The message part is mapped to a method parameter.

out The message partis mapped to a method parameter using adlakie(see sectidn 2.B.3) or is mapped
to the method return type.

i n/ out The message part is mapped to a method parameter using a tlalse

{ Conformance (Non-wrapped parameter naminig)the absence of any customizations, the name of a
mapped Java method parameter MUST be the value ofdtire attribute of thevsdl : part element mapped
according to the rules described in sectibn$ 2.8[and]2.8.1.

An application MAY customize this mapping using thaxws: par anet er binding declaration defined in
sectiol 8.71.

SectiofZ.3P defines rules that govern the ordering ofrpaters in mapped Java methods and identification
of the part that is mapped to the method return type.

2.3.1.2 Wrapper Style

A WSDL operation qualifies for wrapper style mapping onlyhié following criteria are met:

() The operation’s input and output messages (if presextth eontain only a single part

(i) The input message part refers to a global element detiter whose localname is equal to the opera-
tion name

(iii) The output message part refers to a global elementadatibn

(iv) The elements referred to by the input and output mesgage (henceforth referred to agapper
elements) are both complex types defined usingkie sequence compositor

(v) The wrapper elements only contain child elements, thegtmot contain other structures such as
wildcards (element or attribute}sd: choi ce, substitution groups (element references are not per-
mitted) or attributes; furthermore, they must not be nlab

& Conformance (Default mapping moddlperations that do not meet the criteria above MUST be mapped
using non-wrapper style.

12 JAX-WS 2.0 April 19, 2006

2.3. Operation

In some cases use of the wrapper style mapping can lead tgitatnle Java method signatures and use of
non-wrapper style mapping would be preferred.

< Conformance (Disabling wrapper styledn implementation MUST support use of thaxws: enabl e-
W apper St yl e binding declaration to enable or disable the wrapper st@pping of operations (see sec-
tion[B.73).

Using wrapper style, the child elements of the wrapper efgr{feenceforth calledvrapper children are
mapped to Java parameters, wrapper children are clasasiéalows:

i n The wrapper child is only present in the input message parépper element.

out The wrapper child is only present in the output messagesparipper element.

i n/ out The wrapper child is present in both the input and output agespart’s wrapper element.

Two wrapper children are considered equal if they have theedacal name, the same XML schema type
and the same Java type after mapping (see sdciibn 2.4 for Xé¥erBa to Java type mapping rules). The
mapping depends on the classification of the wrapper clsilii#ows:

i n The wrapper child is mapped to a method parameter.

out The wrapper child is mapped to a method parameter using @holdss (see sectidn 2.B.3) or is
mapped to the method return value.

i n/ out The wrapper child is mapped to a method parameter using ahdlass.

& Conformance (Wrapped parameter naminig)the absence of customization, the name of a mapped Java
method parameter MUST be the value of the local name of thpperachild mapped according to the rules
described in sectioris 2.8 ahd 2]8.1.

An application MAY customize this mapping using thaxws: par anet er binding declaration defined in
sectiol 8.71.

{ Conformance (Parameter name clasfithe mapping results in two Java parameters with the sammena
and one of those parameters is not mapped to the method typerrsee sectidn 2.3.2, then this is reported as
an error and requires developer intervention to correttteeby disabling wrapper style mapping, modifying
the source WSDL or by specifying a customized parameter maapping.

{ Conformance (Usingavax. xm . ws. Request W apper). If wrapper style is used, generated Java meth-
ods MUST be annotated withjaavax. xm . ws. Request W apper annotation. The annotation MAY be
omitted if all its properties would have the default values.

{ Conformance (Usingavax. xm . ws. ResponseW apper). If wrapper style is used, generated Java
methods MUST be annotated withjavax. xm . ws. ResponseW apper annotation. The annotation
MAY be omitted if all its properties would have the defaultues.

2.3.1.3 Example

Figure[Z1 shows a WSDL extract and the Java method thatisefsoin using wrapper and non-wrapper
mapping styles. For readability, annotations are omitted.

April 19, 2006 JAX-WS 2.0 13

Chapter 2. WSDL 1.1 to Java Mapping

O©CoOoO~NOOUTA,WNPE

14

<l-- WBDL extract -->
<t ypes>
<xsd: el ement name="set Last TradePri ce">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="ticker Synbol " type="xsd:string"/>
<xsd: el ement nane="I| ast TradePrice" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el emrent >

<xsd: el ement name="set Last Tr adePri ceResponse" >
<xsd: conpl exType>
<xsd: sequence/ >
</ xsd: conpl exType>
</ xsd: el ement >
</types>

<message nanme="set Last TradePrice">
<part name="set Last TradePri ce"
el ement ="t ns: set Last TradePri ce"/ >
</ nessage>

<message nane="set Last TradePri ceResponse" >
<part name="set Last TradePri ceResponse"
el ement ="t ns: set Last TradePri ceResponse"/ >
</ nessage>

<port Type name="St ockQuot eUpdat er">
<operation nane="set Last TradePrice">
<i nput nessage="tns: set Last TradePrice"/>
<out put nessage="tns: set Last Tr adePri ceResponse"/ >
</ operati on>
</ port Type>

/1 non-w apper style mapping
Set Last TradePri ceResponse set Last TradePri ce(
Set Last TradePri ce setLast TradePri ce);
/1l wrapper style mapping
voi d setlLast TradePrice(String tickerSynbol, float |astTradePrice);

Figure 2.1: Wrapper and non-wrapper mapping styles

JAX-WS 2.0 April 19, 2006

2.3. Operation

2.3.2 Parameter Order and Return Type

A wsdl : oper at i on element may have gar amet er Or der attribute that defines the ordering of parame-
ters in a mapped Java method as follows:

» Message parts are either listed or unlisted. If the valugwafdl : part element'snane attribute is
present in thear anet er O der attribute then the part is listed, otherwise it is unlisted.

Note: R2305 in WS-I Basic Profile 1.1117] requires that if the pareterOrder attribute is present
then at most one part may be unlisted. However, the algoritlutfined in this section supports
WSDLs that do not conform with this requirement.

» Parameters that are mapped from message parts are edfieer dir unlisted. Parameters that are
mapped from listed parts are listed; parameters that ar@eadipom unlisted parts are unlisted.

» Parameters that are mapped from wrapper children (wregtpker mapping only) are unlisted.

« Listed parameters appear first in the method signaturedrotder in which their corresponding parts
are listed in thepar anmet er Or der attribute.

» Unlisted parameters either form the return type or follbe listed parameters
» The return type is determined as follows:

Non-wrapper style mapping Only parameters that are mapped from parts in the abstrgmitomes-
sage may form the return type, parts from other messageg (@esectio 2.6.2.1) do not qual-
ify. If there is a single unlistedut part in the abstract output message then it forms the method
return type, otherwise the return typevisi d.

Wrapper style mapping If there is a singleut wrapper child then it forms the method return type,
if there is anout wrapper child with a local name of “return” then it forms thetmod return
type, otherwise the return typeusi d.

» Unlisted parameters that do not form the return type foltbe listed parameters in the following
order:

1. Parameters mapped fram andi n/ out parts appear in the same order the corresponding parts
appear in the input message.

2. Parameters mapped from andi n/ out wrapper children (wrapper style mapping only) appear
in the same order as the corresponding elements appearwrdbeer.

3. Parameters mapped framat parts appear in the same order the corresponding partsrappea
the output message.

4. Parameters mapped framt wrapper children (wrapper style mapping only) appear irstrae
order as the corresponding wrapper children appear in thpper.

2.3.3 Holder Class
Holder classes are used to suppart andi n/ out parameters in mapped method signatures. They provide

a mutable wrapper for otherwise immutable object referenc#AX-WS defines a generic holder class
(j avax. xm . ws. Hol der <T>) that can be used for any Java class.

April 19, 2006 JAX-WS 2.0 15

Chapter 2. WSDL 1.1 to Java Mapping

Parameters whose XML data type would normally be mapped ava @rimitive type (e.gxsd: i nt to

i nt) are instead mapped taHal der whose type parameter is bound to the Java wrapper classpona-
ing to the primitive type. E.g., anut ori n/out parameter whose XML data type would normally be
mapped to a Javieant is instead mapped teol der <j ava. | ang. | nt eger >.

{ Conformance (Use dfol der): Implementations MUST maput andi n/ out method parameters us-
ing j avax. xm . ws. Hol der <T>, with the exception of aut part that has been mapped to the method’s
return type.

2.3.4 Asynchrony

In addition to the synchronous mappingvafd! : oper at i on described above, a client side asynchronous
mapping is also supported. It is expected that the asynobsomapping will be useful in some but not
all cases and therefore generation of the client side asgnobis methods should be optional at the users
discretion.

{ Conformance (Asynchronous mapping requireér implementation MUST support the asynchronous
mapping.

& Conformance (Asynchronous mapping optioAh implementation MUST support use of thexws-

: enabl eAsyncMappi ng binding declaration defined in sectibn8]7.3 to enable asalde the asynchronous
mapping.

Editors Note 2.1 JSR-181 currently does not define annotations that can ée tssmark a method as being
asynchronous.

2.3.4.1 Standard Asynchronous Interfaces
The following standard interfaces are used in the asyndusoperation mapping:

javax. xml . ws. Response A generic interface that is used to group the results of a atethvocation
with the response contexResponse extendsFut ur e<T> to provide asynchronous result polling
capabilities.

javax. xm . ws. AsyncHandl er A generic interface that clients implement to receive nssial an asyn-
chronous callback.

2.3.4.2 Operation

Eachwsdl : oper ati on is mapped to two additional methods in the correspondingeendpoint inter-
face:

Polling method A polling method returns a typeBesponse<ResponseBeanthat may be polled using
methods inherited fronfut ur e<T> to determine when the operation has completed and to retriev
the results. See below for further detailsRasponseBean

Callback method A callback method takes an additional final parameter thadn instance of a typed
AsyncHandl er <ResponseBearand returns a wildcarBut ur e<?> that may be polled to determine
when the operation has completed. The object returned Foinur e<?>. get () has no standard
type. Client code should not attempt to cast the object tomamicular type as this will result in
non-portable behavior.

16 JAX-WS 2.0 April 19, 2006

2.3. Operation

{ Conformance (Asynchronous method naminig)the absence of customizations, the name of the polling
and callback methods MUST be the value of there attribute of thewsdl : oper at i on suffixed with
“Async” mapped according to the rules described in secibAsand Z.8l1.

& Conformance (Asynchronous parameter namirig)e name of the method parameter for the callback
handler MUST be “asyncHandler”. Parameter name collisi@uglire user intervention to correct, see
sectiolZ81.

An application MAY customize this mapping using thaxws: met hod binding declaration defined in
sectiof8.7B.

< Conformance (Failed method invocationj:there is any error prior to invocation of the operation, an
implementation MUST throw s#ébSer vi ceExcept i on?.

2.3.4.3 Message and Part

The asynchronous mapping supports both wrapper and nguperranapping styles, but differs in how it
mapsout andi n/ out parts or wrapper children:

in The part or wrapper child is mapped to a method parametersasilded in sectioh 2.3.1.

out The part or wrapper child is mapped to a property of the resptean (see below).

infout The part or wrapper child is mapped to a method parameterdigehclass) and to a property of the
response bean.

2.3.4.4 Response Bean

A response bean is a mapping of an operation’s output mesgagmtains properties for eaaiut and
i n/ out message part or wrapper child.

{ Conformance (Response bean namirig)the absence of customizations, the name of a response bean
MUST be the value of theane attribute of thewsdl : oper at i on suffixed with “Response” mapped ac-
cording to the rules described in secti@énd 2.8[andR.8.1.

A response bean is mapped from a global element declaratilonving the rules described in sectibnl2.4.
The global element declaration is formed as follows (in oafgreference):

« |If the operation’s output message contains a single parttzat part refers to a global element decla-
ration then use the referenced global element.

» Synthesize a global element declaration of a complex tyfmed using thexsd: sequence com-
positor. Each output message part is mapped to a child ofytiteesized element as follows:

— Each global element referred to by an output part is addedthichof the sequence.

— Each part that refers to a type is added as a child of the segumncreating an element in no
namespace whose localname is the value ohtree attribute of thensdl : part element and
whose type is the value of the/pe attribute of theasdl : part element

LErrors that occur during the invocation are reported whercttent attempts to retrieve the results of the operatiee,section

2325

April 19, 2006 JAX-WS 2.0 17

Chapter 2. WSDL 1.1 to Java Mapping

If the resulting response bean has only a single propertyttteebean wrapper should be discarded in method
signatures. In this case, if the property is a Java primtpe then it is boxed using the Java wrapper type
(e.g.i nt tol nt eger) to enable its use witResponse.

2.3.4.5 Faults

Mapping of WSDL faults to service specific exceptions isitigal for both asynchronous and synchronous
cases, sectioh 2.5 describes the mapping. However, maggadrsonous methods do not throw service
specific exceptions directly. Insteag ava. uti | . concurrent. Executi onExcept i onis thrown when

a client attempts to retrieve the results of an asynchromoethod invocation via th&esponse. get
method.

& Conformance (Asynchronous fault reportingd:WSDL fault that occurs during execution of an asyn-
chronous method invocation MUST be mapped foaaa. util . concurrent. Executi onExcepti on
thrown when the client callResponse. get .

Response is a static generic interface whoget method cannot throw service specific exceptions. Instead
of throwing a service specific exceptionRasponse instance throws agxecut i onExcepti on whose
cause is set to an instance of the service specific exceptapped from the corresponding WSDL fault.

{ Conformance (Asychronous fault caus@n Execut i onExcept i on that is thrown by thget method
of Response as a result of a WSDL fault MUST have as its cause the servieeifgpexception mapped
from the WSDL fault, if there is one, otherwise tReot ocol Except i on mapped from the WSDL fault

(sedBh).

2.3.4.6 Mapping Examples

Figure[Z2 shows an example of the asynchronous operatigpinta Note that the mapping usesoat
instead of a response bean wrappt (Pr i ceResponse) since the synthesized global element declaration
for the operations output message (lines 17—24) maps t@arnss bean that contains only a single property.

2.3.4.7 Usage Examples

» Synchronous use.

1 Service service = ...;
2 StockQuote quoteService = (StockQuote)service. getPort(portNane);
3 Float quote = quoteService.getPrice(ticker);

» Asynchronous polling use.

Service service = ...;
St ockQuot e quot eServi ce = (St ockQuot e)service. get Port (port Nane);
Response<Fl| oat > response = quot eServi ce. get Pri ceAsync(ticker);
whil e (!response.isbDone()) {

/1 do something while we wait
}

Fl oat quote = response.get();

NOoO o~ WNRE

18 JAX-WS 2.0 April 19, 2006

2.3. Operation

O©CoOoO~NOOOUTPA,WNLPE

<l-- WBDL extract -->
<message nane="getPrice">

<part name="ticker" type="xsd:string"/>
</ nessage>

<message nane="get Pri ceResponse" >
<part name="price" type="xsd:float"/>
</ nessage>

<port Type name="St ockQuot e" >
<operation nanme="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/>
</ oper ati on>
</ port Type>

<!-- Synthesized response bean el enent -->
<xsd: el ement name="get Pri ceResponse" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="price" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el emrent >

/1 synchronous nappi ng

@\ébServi ce

public interface StockQuote {
float getPrice(String ticker);

}

/'l asynchronous mappi ng
@\bSer vi ce
public interface StockQuote {
float getPrice(String ticker);
Response<Fl| oat > get Pri ceAsync(String ticker);
Fut ure<?> getPriceAsync(String ticker, AsyncHandl er<Fl oat >);

Figure 2.2: Asynchronous operation mapping

April 19, 2006 JAX-WS 2.0

19

Chapter 2. WSDL 1.1 to Java Mapping

» Asynchronous callback use.

cl ass MyPriceHandl er inpl enments AsyncHandl er <Fl oat > {
public voi d handl eResponse(Response<Fl oat > response) {

Fl oat price = response.get();
/1 do sonething with the result

}

©CoOo~NOoOUThr~,WNE

Service service = ...;

10 StockQuote quoteService = (StockQuote)service. getPort (portNane);
11 MPriceHandl er nyPriceHandl er = new MyPri ceHandl er () ;

12 quoteService.getPriceAsync(ticker, nmyPriceHandl er);

2.4 Types

Mapping of XML Schema types to Java is described by the JAXBsPecificatiori[1D]. The contents of a
wsdl : t ypes section is passed to JAXB along with any additional type enm&nt declarations (e.g., see
section[Z.3 1) required to map other WSDL constructs to.J&/g., sectiodl 2314 defines an algorithm
for synthesizing additional global element declaratiomgtovide a mapping from WSDL operations to
asynchronous Java method signatures.

JAXB supports mapping XML types to either Java interfaceslasses. By default JAX-WS uses the class
based mapping of JAXB but also allows use of the interfacedasapping.

& Conformance (JAXB class mappingih the absence of user customizations, an implementatiosMU
use the JAXB class based mapping witkner at eVal ued ass set tot r ue andgener at eEl enent -
Cl ass set tof al se when mapping WSDL types to Java.

& Conformance (JAXB customization usédn implementation MUST support use of JAXB customiza-
tions during mapping as detailed in sectiod 8.5.

& Conformance (JAXB customization clastlio avoid clashes, if a user customizes the mapping, an im-
plementation MUST NOT add the default class based mappis@peuzations.

In addition, for ease of use, JAX-WS strips al¥XBEl enent <T> wrapper off the type of a method pa-
rameter if the normal JAXB mapping would result in 8neE.g. a parameter that JAXB would map to
JAXBEI enent <I nt eger > is instead be mapped tmt eger .

JAXB provides support for the SOAP MTOM][R4]/XAPJ25] mecigan for optimizing transmission of bi-
nary data types. JAX-WS provides the MIME processing reglio enable JAXB to serialize and de-
serialize MIME based MTOM/XOP packages. The contract betw@AXB and an MTOM/XOP pack-
age processor is defined by thavax. xni . bi nd. At t achnent Mar shal | er andj avax. xml . bi nd-

. Attachment Unmar shal | er classes. A JAX-WS implementation can plug into it by registg its
OoWnAt t achnent Mar shal | er andAt t achnment Unmar shal | er at runtime using theet At t achnent -
Unmar shal | er method ofj avax. xni . bi nd. Unmar shal | er (resp. theset Att achnment Mar shal | er
method ofj avax. xm . bi nd. Marshal | er).

2JAXB maps an element declaration to a Java instance thagimgsits JAXBElement.

20 JAX-WS 2.0 April 19, 2006

2.5. Fault

2.5 Fault

A wsdl : faul t element is mapped to a Java exception.

< Conformancej(avax. xm . ws. WebFaul t required): A mapped exception MUST be annotated with a
j avax. xml . ws. WebFaul t annotation.

{ Conformance (Exception naminghh the absence of customizations, the name of a mapped @xtept
MUST be the value of theane attribute of thensdl : message referred to by thensdl : f aul t element
mapped according to the rules in sectibnd 2.8[and]2.8.1.

An application MAY customize this mapping using fhexws: cl ass binding declaration defined in section
c. (4.

Multiple operations within the same service can define wajant faults. Faults defined within the same
service are equivalent if the values of theirssage attributes are equal.

{» Conformance (Fault equivalenceln implementation MUST map equivalent faults within a seevio a
single Java exception class.

A wsdl : faul t element refers to asdl : message that contains a single part. The global element decla-
ratior? referred to by that part is mapped to a Java bean, hencefaltéd @fault bean using the mapping
described in sectidnd.4. An implementation generates pperaexception class that extendsra. | ang-

. Except i on and contains the following methods:

WrapperException(St ri ng nmessage, FaultBean faul t1nfo) A constructor wheréVrapperExcep-
tion is replaced with the name of the generated wrapper exceptidfraultBeanis replaced by the
name of the generated fault bean.

WrapperException(St ri ng nmessage, FaultBean faul t|Info, Throwabl e cause) A constructor
whereWrapperExceptiois replaced with the name of the generated wrapper excegtioRaultBean
is replaced by the name of the generated fault bean. Thetashantcause, may be used to convey
protocol specific fault information, see sectlon 614.1.

FaultBean get Faul t I nfo() Getter to obtain the fault information, whelfaultBeanis replaced by the
name of the generated fault bean.

The WrapperExceptiortlass is annotated using tiebFaul t annotation (see secti¢n¥.2) to capture the
local and namespace name of the global element mapped tautdéan.

Two wsdl : faul t child elements of the samesdl : oper at i on that indirectly refer to the same global
element declaration are considered to be equivalent sirae is no interoperable way of differentiating
between their serialized forms.

& Conformance (Fault equivalenceit runtime an implementation MAY map a serialized fault irstoy
equivalent Java exception.

2.5.1 Example

FigurelZ.B shows an example of the WSDL fault mapping desdrébove.

3Ws-I Basic Profile[1l7] R2205 requires parts to refer to edets rather than types.

April 19, 2006 JAX-WS 2.0 21

Chapter 2. WSDL 1.1 to Java Mapping

©CoOo~NOoOUThr~,WNE

22

<!-- WBDL extract -->
<t ypes>
<xsd: schema t ar get Nanespace="...">
<xsd: el ement name="faul tDetail ">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement name="nmgj or Code" type="xsd:int"/>
<xsd: el ement name="ni nor Code" type="xsd:int"/>

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schema>
</types>

<message nane="operati onException">

<part name="faultDetail" elenent="tns:faultDetail"/>

</ nessage>

<port Type name="St ockQuot eUpdat er" >
<operation nane="set Last TradePrice">
<input .../>
<output .../>
<fault name="operati onException”
nmessage="t ns: oper ati onExcepti on"/>
</ operati on>
</ port Type>

/1 fault mapping

@\ébFaul t (name="faul tDetail", targetNanespace="...")

cl ass Operati onException extends Exception {

Qper ati onException(String nessage, Faul tDetail
Qper ati onException(String nessage, Faul tDetai l

Thr owabl e cause) {...}
Faul tDetail getFaultlnfo() {...}

Figure 2.3: Fault mapping

JAX-WS 2.0

faultinfo) {...}
faul t1nfo,

April 19, 2006

2.6. Binding

2.6 Binding

The mapping from WSDL 1.1 to Java is based on the abstractiptiso of awsdl : port Type and its
associated operations. However, the binding of a port tgpa protocol can introduce changes in the
mapping — this section describes those changes in the geasesand specifically for the mandatory WSDL
1.1 protocol bindings.

{» Conformance (Required WSDL extension#&n implementation MUST support mapping of the WSDL
1.1 specified extension elements for the WSDL SOAP and MIlfigihgs.

2.6.1 General Considerations

R2209 in WS-I Simple SOAP Binding Profile 1.1]26] recommesitidat all parts of a message be bound but
does not require it.

& Conformance (Unbound message parig):preserve the protocol independence of mapped operations
an implementation MUST NOT ignore unbound message partswiagpping from WSDL 1.1 to Java.
Instead an implementation MUST generate binding code gmatresi n andi n/ out parameters mapped
from unbound parts and that preseots parameters mapped from unbound partawd .

2.6.2 SOAP Binding

This section describes changes to the WSDL 1.1 to Java n@fmbhmay result from use of certain SOAP
binding extensions.

2.6.2.1 Header Binding Extension

A soap: header element may be used to bind a part from a message to a SOAPrhéadelarified by
R2208 in WS-I Basic Profile 1.1[17], the part may belong tihei the message bound by theap: body
or to a different message:

« If the part belongs to the message bound bystbiep: body then it is mapped to a method parameter
as described in sectiénP.3. Such a part is always mappeg th&mon-wrapper style.

« If the part belongs to a different message than that bountthdsyoap: body then it may optionally
be mapped to an additional method parameter. When mappegbi@meter, the part is treated as an
additional unlisted part for the purposes of the mappingdesd in sectioli 2]3. This additional part
does not affect eligibility for wrapper style mapping of timessage bound by treap: body (see
sectiofZ.311); the additional part is always mapped usieghbn-wrapper style.

Note that the order of headers in a SOAP message is indepeoidér® order ofsoap: header elements

in the WSDL binding — see R2751 in WS-I Basic Profile [10[8hid causes problems when two or more
headers with the same qualified name are present in a messdgme or more of those headers are bound
to a method parameter since it is not possible to determiriehwteader maps to which parameter.

& Conformance (Duplicate headers in binding¥hen mapping, an implemention MUST report an error
if the binding of an operation includes two or mareap: header elements that would result in SOAP
headers with the same qualified name.

April 19, 2006 JAX-WS 2.0 23

Chapter 2. WSDL 1.1 to Java Mapping

{ Conformance (Duplicate headers in messadge):implementation MUST generate a runtime error if,
during unmarshalling, there is more than one instance ofaaldrewhose qualified name is mapped to a
method parameter.

2.6.3 MIME Binding

The presence of ai me: nul ti part Rel at ed binding extension element as a child ofedl : i nput or
wsdl : out put elementin awsdl : bi ndi ng indicates that the corresponding messages may be satiakze
MIME packages. The WS-I Attachments Profile]27] descritves separate attachment mechanisms, both
based on use of the WSDL 1.1 MIME bindihg[5]:

wsi ap: swaRef A schema type that may be used in the abstract message tiesciipindicate a reference
to an attachment.

m me: cont ent A binding construct that may be used to bind a message pantattachment.

JAXBI[L0] describes the mapping from the WS-I definesl ap: swar ef schema type to Java and, since
JAX-WS inherits this capability, it is not discussed funthere. Use of ther ne: cont ent construct is
outside the scope of JAXB mapping and the following subsactiescribes changes to the WSDL 1.1 to
Java mapping that results from its use.

2.6.3.1 m ne: content

Message parts are mapped to method parameters as desorgmdior 2B regardless of whether the part
is bound to the SOAP message or to an attachment. JAXB ruéessad to determine the Java type of
message parts based on the XML schema type referenced bgdhepart. However, when a message
part is bound to a MIME part (using the ne: cont ent element of the WSDL MIME binding) additional
information is available that provides the MIME type of theta and this can optionally be used to narrow
the default JAXB mapping.

& Conformance (Use of MIME type informationAn implementation MUST support using thexws-
: enabl eM MECont ent binding declaration defined in secti@n817.5 to enable sakle the use of the
additional metadata imi ne: cont ent elements when mapping from WSDL to Java.

JAXB defines a mapping between MIME types and Java types. ivdhgart is bound using one or more

ni me: cont ent element$ and use of the additional metadata is enabled then the JAXEpimg is cus-
tomized to use the most specific type allowed by the set of HEifypes described for the part in the bind-
ing. The case where the parameter modeN®UT and is bound to different mime bindings in the input and
output messages using theme: cont ent element MUST also be treated in the same way as described
above. Please refer to appendix H in the JAXB 2.0 specitiogtL(] for details of the type mapping.

The part belongs to the message bound bystbep: body then it is mapped to a method parameter as
described in sectidnd.3. Such a part is always mapped usingan-wrapper style.

Parts bound to MIME using the me: cont ent WSDL extension are mapped as described in seffidn 2.3.
These parts are mapped using the non-wrapper style.

Figure[Z% shows an example WSDL and two mapped interfages:without using theri ne: cont ent
metadata, the other using the additional metadata to nahewinding. Note that in the latter the type of
thecl ai nPhot o method parameter istage rather than the defaultyt e[] .

“Multiple m me: cont ent elements for the same part indicate a set of permissiblmatetypes.

24 JAX-WS 2.0 April 19, 2006

2.6. Binding

O©CoO~NOOOUOTA~,WNLPE

<l-- WBDL extract -->
<wsdl : nressage nane="d ai nl n">
<wsdl : part nane="body" el enent="types: d ai nDetail"/>
<wsdl : part nane="d ai nPhot 0" type="xsd: base64Bi nary"/>
</ wsdl : nessage>

<wsdl : port Type nanme="d ai nPort Type" >
<wsdl : operati on nane="Sendd ai ni' >
<wsdl : i nput nessage="tns:dainn"/>
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="d ai nBi ndi ng" type="tns: C ai nPort Type" >

<soapbi nd: bi ndi ng styl e="docunent" transport="..."/>
<wsdl : operati on nane="Sendd ai ni' >
<soapbi nd: oper ati on soapAction="..."/>

<wsdl : i nput >
<m ne: mul ti part Rel at ed>
<m ne: part>
<soapbi nd: body parts="body" use="literal"/>
</ m ne: part >
<m me: part>
<m ne: content part="0d ai nPhot 0" type="inage/jpeg"/>
<m ne: content part="d ai nPhoto" type="inmage/gif"/>
</ m ne: part >
</mnme:nultipart Rel at ed>
</ wsdl : i nput >
</ wsdl : operati on>
</ wsdl : bi ndi ng>

/1 Mapped Java interface wi thout mnme:content mnetadata
@\bServi ce
public interface C ainPortType {
public String sendd ai n{d ai nDetail detail, byte clainPhoto[]);
}

/1 Mapped Java interface using m ne:content metadata
@\bServi ce
public interface C ainPort Type {
public String sendd ai n(d ai nDetail detail, Inmage clainPhoto);
}

Figure 2.4: Use ofri me: cont ent metadata

April 19, 2006 JAX-WS 2.0

25

Chapter 2. WSDL 1.1 to Java Mapping

{ Conformance (MIME type mismatchjOn receipt of a message where the MIME type of a part does not
match that described in the WSDL an implementation SHOULDwhaWebSer vi ceExcept i on.

< Conformance (MIME part identification)An implementation MUST use the algorithm defined in the
WS-I Attachments Profile[27] when generating the MI&nt ent - | Dheader field value for a part bound
usingni nme: cont ent .

2.7 Service and Port

A wsdl : servi ce is a collection of relatedsdl : port elements. Awsdl : port element describes a port
type bound to a particular protocol ¢adl : bi ndi ng) that is available at particular endpoint address. On
the client side, asdl : servi ce element is mapped to a generated service class that extands. xn -

. Ws. Ser vi ce (see sectiof 411 for more information on ther vi ce class).

< ConformanceSer vi ce superclass required)A generated service class MUST extendjtagax. xm -
. ws. Servi ce class.

{ Conformance (Service class namindp:the absence of customization, the name of a generatetserv
class MUST be the value of theane attribute of thewsdl : ser vi ce element mapped according to the
rules described in sectiohsP.8 dnd 2.8.1.

An application MAY customize the name of the generated serelass using thpaxws: cl ass binding
declaration defined in sectién 8.7.7.

In order to allow an implementation to identify the Web seevithat a generated service class corre-
sponds to, the latter is required to be annotated yithax. xm . ws. WebSer vi ceC i ent annotation.
The annotation contains all the information necessarydatiwa WSDL document and uniquely identify a
wsdl : servi ceinside it.

{ Conformancej(avax. xnl . ws. WebSer vi ced i ent required): A generated service class MUST be
annotated with favax. xnl . ws. WebSer vi ced i ent annotation.

JAX-WS 2.0 mandates that two constructors be present oy geserated service class.

& Conformance:A generated service class MUST have a default (i.e. zenoraegt) public construc-
tor. This constructor MUST call the protected constructecldred inj avax. xm . ws. Ser vi ce, passing

as arguments the WSDL location and the service name. Thes/aluthe actual arguments for this call
MUST be equal (in thg ava. | ang. Obj ect . equal s sense) to the values specified in the mandatory
WebSer vi ced i ent annotation on the generated service class itself.

{» Conformance:The implementation class MUST have a public constructot thiees two arguments,
the wsdl location (g ava. net. URL) and the service name {(avax. xm . namespace. QNane). This
constructor MUST call the protected constructo Bvax. xm . ws. Ser vi ce passing as arguments the
WSDL location and the service name values with which it wasked.

For each port in the service, the generated client sidecgeplass contains the following methods, one for
each port defined by the WSDL service and whose binding ipatigd by the JAX-WS implementation:

get PortName() One required method that takes no parameters and returroxy tiat implements the
mapped service endpoint interface. The method generakegiades to th&er vi ce. get Port (.. .)
method passing it the port name. The value of the port name Mi¢Sequal to the value specified in
the mandatory\¢bEndpoi nt annotation on the method itself.

26 JAX-WS 2.0 April 19, 2006

2.7. Service and Port

{ Conformance (Failed getPort Method): generatedyet PortNamemethod MUST throwj avax. xm -
. Ws. W\ebSer vi ceExcept i on on failure.

The value ofPortNamen the above is derived as follows: the value of tlaere attribute of theasdl : port
element is first mapped to a Java identifier according tathes described in secti@nP.8, this Java identifier
is then treated as a JavaBean property for the purposesivhdethe get PortNamemethod name.

An application MAY customize the name of the generated nkfion a port using thg axws: met hod
binding declaration defined in sectibn 817.8.

In order to enable an implementation to determineviha : port that a port getter method corresponds to,
the latter is required to be annotated withavax. xm . ws. WebEndpoi nt annotation.

{ Conformancej(avax. xni . ws. WebEndpoi nt required): Theget PortNamemethods of generated ser-
vice interface MUST be annotated with) avax. xnl . ws. WebEndpoi nt annotation.

2.7.1 Example

The following shows a WSDL extract and the resulting gemeratervice class.

<!-- WBDL extract -->
<wsdl : servi ce nanme="St ockQuot eServi ce">
<wsdl : port nane="St ockQuot eHTTPPort" bi ndi ng="St ockQuot eHTTPBi ndi ng"/ >
<wsdl : port nane="St ockQuot eSMIPPort" bi ndi ng="St ockQuot eSMIPBi ndi ng"/ >
</ wsdl : servi ce>

/| Generated Service d ass
@\ébServi ced i ent (name="St ockQuot eSer vi ce",

t ar get Nanespace="htt p: // exanpl e. com st ocks",
10 wsdl Locati on="http://exanpl e. com st ocks. wsdl ")
11 public class StockQuoteService extends javax.xm .ws. Service {

©CoOo~NOoOUThr~,WNE

13 public StockQuoteService() {

14 super (new URL("http://exanpl e. com st ocks. wsdl "),

15 new QName("http://exanpl e. com st ocks",

16 " St ockQuot eService"));

17 }

19 public StockQuoteService(URL wsdl Locati on, QName servi ceNane) ({

20 super (wsdl Locati on, servi ceNane);

21 }

23 @\ebEndpoi nt (nane=" St ockQuot eHTTPPort ")

24 public StockQuoteProvider get StockQuoteHTTPPort () {

25 return (StockQuoteProvi der)super. getPort ("StockQuot eHTTPPort",

26 St ockQuot ePr ovi der . cl ass) ;
27 }

29 @\¢bEndpoi nt (nane=" St ockQuot eSMIPPort ")

30 public StockQuoteProvider get StockQuoteSMIPPort () {

31 return (StockQuoteProvi der)super. getPort ("StockQuot eSMIPPort",

32 St ockQuot ePr ovi der. cl ass) ;
33 }

34 }

April 19, 2006 JAX-WS 2.0 27

Chapter 2. WSDL 1.1 to Java Mapping

In the above St ockQuot ePr ovi der is the service endpoint interface mapped from the WSDL pyqre t
for both referenced bindings.

2.8 XML Names

Appendix C of JAXB 1.0[9] defines a mapping from XML names #wvd identifiers. JAX-WS uses this
mapping to convert WSDL identifiers to Java identifiershwtiie following modifications and additions:

Method identifiers When mappingwsdl : oper at i on names to Java method identifiers, thet or set
prefix is not added. Instead the first word in the word-lisshits first character converted to lower
case.

Parameter identifiers When mappingasdl : part names or wrapper child local names to Java method
parameter identifiers, the first word in the word-list h&sfirst character converted to lower case.
Clashes with Java language reserved words are reportecbes &nd require use of appropriate cus-
tomizations to fix the clash.

2.8.1 Name Collisions

WSDL name scoping rules may result in name collisions whepping from WSDL 1.1 to Java. E.g., a
port type and a service are both mapped to Java classes buL\AlB¥s both to be given the same name.
This section defines rules for resolving such name cotiisio

The order of precedence for name collision resolution iolevfs (highest to lowest);

1. Service endpoint interface
2. Non-exception Java class
3. Exception class
4. Service class
If a name collision occurs between two identifiers with eliint precedences, the lower precedence item
has its name changed as follows:
Non-exception Java classThe suffix “_Type” is added to the class name.
Exception class The suffix “.Except i on” is added to the class name.
Service classThe suffix “_Ser vi ce” is added to the class name.
If a name collision occurs between two identifiers with tlaeng precedence, this is reported as an error

and requires developer intervention to correct. The erray be corrected either by modifying the source
WSDL or by specifying a customized name mapping.

If a name collision occurs between a mapped Java method arethedhinj avax. xm . ws. Bi ndi ng-
Provi der (an interface that proxies are required to implement, seiosd4.2), the prefix " is added to
the mapped method.

28 JAX-WS 2.0 April 19, 2006

Chapter 3

Java to WSDL 1.1 Mapping

This chapter describes the mapping from Java to WSDL 1.1s a@ipping is used when generating web
service endpoints from existing Java interfaces.

{ Conformance (WSDL 1.1 support)mplementations MUST support mapping Java to WSDL 1.1.

The following sections describe the default mapping frowhe#ava construct to the equivalent WSDL 1.1
artifact.

An application MAY customize the mapping using the annotatidefined in sectidd 7.

< Conformance (Standard annotationgn implementation MUST support the use of annotations @effin
in sectior¥ to customize the Java to WSDL 1.1 mapping.

3.1 Java Names

{ Conformance (Java identifier mappingh the absence of annotations described in this specificati
Java identifiers MUST be mapped to XML names using the algoridefined in appendix B of SOAP
1.2 Part 4[4].

3.1.1 Name Collisions

WS-I Basic Profile 1.0]8] (see R2304) requires operatioithiwawsdl : por t Type to be uniquely named
— support for customization of the operation name allows tbguirement to be met when a Java SEI
contains overloaded methods.

& Conformance (Method name disambiguatioAh implementation MUST support the use of fhevax-
. j ws. WebMet hod annotation to disambiguate overloaded Java method nanmes nvapped to WSDL.

3.2 Package

A Java package is mapped tonadl : def i ni ti ons element and an associatedr get Nanespace at-
tribute. Thewsdl : def i ni ti ons element acts as a container for other WSDL elements thathtegirm
the WSDL description of the constructs in the correspondiena package.

A default value for the ar get Namespace attribute is derived from the package name as follows:

April 19, 2006 JAX-WS 2.0 29

Chapter 3. Java to WSDL 1.1 Mapping

1. The package name is tokenized using the “.” character aliraitkr.
2. The order of the tokens is reversed.

3. The value of the ar get Nanespace attribute is obtained by concatenating “http://"to thd I
tokens separated by “ . "and “/”.

E.g., the Java package “com.example.ws” would be mappedettarget namespace “http://ws.example-
.com/”.

{» Conformance (Package name mappirigirej avax. j ws. WebSer vi ce annotation (see sectign 7.11.1)
MAY be used to specify the target namespace to use for a Weiteeand MUST be used for classes or
interfaces in no package. In the absence phaax. j ws. WebSer vi ce annotation the Java package name
MUST be mapped to the value of thedl : def i ni ti ons element’st ar get Namrespace attribute using
the algorithm defined above.

No specific authoring style is required for the mapped WSDBtuent; implementations are free to gen-
erate WSDL that uses the WSDL and XML Schema import direstive

{ Conformance (WSDL and XML Schema import directive§enerated WSDL MUST comply with the
WS-I Basic Profile 1.0IB] restrictions (See R2001, R2001%] R2003) on usage of WSDL and XML Schema
import directives.

3.3 Class

A Java class (not an interface) annotated witlaaax. j ws. WebSer vi ce annotation can be used to define
a Web service.

In order to allow for a separation between Web service iaterfand implementation, if th&bSer vi ce
annotation on the class under consideration resd@oi nt | nt er f ace element, then the interface referred
by this element is for all purposes the SEI associated wéltlhss.

Otherwise, the class implicitly defines a service endpiitdrface (SEI) which comprises all of the public
methods that satisfy one of the following conditions:

1. They are annotated with thevax. j ws. WebMet hod annotation with theexcl ude element set to
f al se or missing (sincé al se is the default for this annotation element).

2. They are not annotated with thavax. j ws. WebMet hod annotation but their declaring class has a
j avax. j ws. WebSer vi ce annotation.

For mapping purposes, this implicit SEI and its methods ansiclered to be annotated with the same Web
service-related annotations that the original class anché@thods have.

In pratice, in order to exclude a public method of a class tatad withWebSer vi ce and not directly
specifying aendpoi nt | nt er f ace from the implicitly defined SElI, it is necessary to annotte method
with awebMet hod annotation with thexcl ude element set tor ue.

{ Conformance (Class mappingkn implementation MUST support the mappingjafvax. j ws. Web-
Ser vi ce annotated classes to implicit service endpoint interfaces

For mapping purposes, this class must be a top level classtatiainner class. As defined by JSR 181, a
class annotated withavax. j ws. WebSer vi ce must have a default public constructor.

30 JAX-WS 2.0 April 19, 2006

3.4. Interface

3.4 Interface

A Java service endpoint interface (SEI) is mapped t&dl : port Type element. Thewsdl : port Type
element acts as a container for other WSDL elements thathtegéorm the WSDL description of the
methods in the corresponding Java SEI. An SEl is a Javaaatethat meets all of the following criteria:

It MUST carry aj avax. j ws. WebSer vi ce annotation (see7Z.11.1).

Any of its methods MAY carry @ avax. j ws. WebMet hod annotation (see7.11.2).

e javax.jws. WebMet hod if used, MUST NOT have thexcl ude element set tor ue.

All method parameters and return types are compatible th@hJAXB 2.0[10] Java to XML Schema
mapping definition

{» Conformance (portType naminglhej avax. j ws. WebSer vi ce annotation (see sectiGn 7.111.1) MAY
be used to customize tmame andt ar get Nanespace attributes of thensdl : port Type element. If not
customized, the value of theane attribute of thensdl : port Type element MUST be the name of the SEI
not including the package name and the target namespacmmited as defined above in section 3.2.

Figure[3.1 shows an example of a Java SEI and the corresppwsiéh : por t Type.

3.4.1 Inheritance

WSDL 1.1 does not define a standard representation for theritance ofwsdl : port Type elements.
When mapping an SEIl that inherits from another interface 3l is treated as if all methods of the inherited
interface were defined within the SEI.

& Conformance (Inheritance flatteningk mappedwsdl : por t Type element MUST contain WSDL def-
initions for all the methods of the corresponding Java SElLising all inherited methods.

{ Conformance (Inherited interface mappingn implementation MAY map inherited interfaces to addi-
tionalwsdl : port Type elements within thesdl : defi ni ti ons element.

3.5 Method

Each public method in a Java SEI is mapped t&dl : oper at i on element in the correspondingdl -
: port Type plus one or moresdl| : nessage elements.

< Conformance (Operation namingh the absence of customizations, the value ofrthse attribute of
thewsdl : oper at i on element MUST be the name of the Java method. jTheax. j ws. WebMet hod (see
[ZT12) annotation MAY be used to customize the value ofntinee attribute of thewsdl : operati on
element and MUST be used to resolve naming conflicts. Ifethel ude element of thg avax. j ws-

. WWebMet hod is set tat r ue then the Java method MUST NOT be present in the wsdlasih: oper ati on
element.

Methods are either one-way or two-way: one way methods haveput but produce no output, two way
methods have an input and produce an output. Selcfior 3.5ctildes one way operations further.

Thewsdl : oper at i on element corresponding to each method has one or more céitteeks as follows:

April 19, 2006 JAX-WS 2.0 31

Chapter 3. Java to WSDL 1.1 Mapping

* Awsdl : i nput element that refers to an associated! : ressage element to describe the operation
input.

» (Two-way methods only) an optionakdl : out put element that refers towsdl : nressage to de-
scribe the operation output.

» (Two-way methods only) zero or movesdl : f aul t child elements, one for each exception thrown
by the method. Thewsdl! : f aul t child elements refer to associatedd! : nessage elements to
describe each fault. See sectionl 3.7 for further detailsxoamion mapping.

The value of ansdl : nessage element’snane attribute is not significant but by convention it is nornyall
equal to the corresponding operation name for input messaige the operation hame concatenated with
“Response” for output messages. Naming of fault messagkseibed in section sectibnB.7.

Eachwsdl : message element has one of the followihg

Document style A singlewsdl : par t child element that refers, via ah enent attribute, to a global ele-
ment declaration in thesdl : t ypes section.

RPC style Zero or morewsdl : part child elements (one per method parameter and one for a ridn-vo
return value) that refer, viataype attribute, to named type declarations in ttszll : t ypes section.

Figure[3:1 shows an example of mapping a Java interfaceinorgea single method to WSDL 1.1 using
document style. Figude—3.2 shows an example of mapping aid@mace containing a single method to
WSDL 1.1 using RPC style.

Sectior-3.b describes the mapping from Java methods angtrameters to corresponding global element
declarations and named types in tsall : t ypes section.

3.5.1 One Way Operations

Only Java methods whose return typ@ @ d, that have no parameters that implemiemitder and that do
not throw any checked exceptions can be mapped to one-wagtmpes. Not all Java methods that fulfill
this requirement are amenable to become one-way operai@mhgautomatic choice between two-way and
one-way mapping is not possible.

¢ Conformance (One-way mappingimplementations MUST support use of jhevax. j ws. OneWy (see
[ZT1.3) annotation to specify which methods to map to ong-eperations. Methods that are not annotated
with j avax. j ws. OneWay MUST NOT be mapped to one-way operations.

{ Conformance (One-way mapping erroréinplementations MUST prevent mapping to one-way opera-
tions of methods that do not meet the necessary criteria.

3.6 Method Parameters and Return Type

A Java method’s parameters and return type are mapped tooremis of either the messages or the
global element declarations mapped from the method. Pasasnean be mapped to components of the

Thej avax. j ws. WebPar amandj avax. j ws. WebResul t annotations can introduce additional parts into mes-
sages when thkeader elementid r ue.

32 JAX-WS 2.0 April 19, 2006

3.6. Method Parameters and Return Type

O©CoOoO~NOUThA~,WNE

/1 Java
package com exanpl e;
@\bServi ce

public interface StockQuoteProvider {
float getPrice(String tickerSynbol)
throws Ti cker Excepti on;

}

<l-- WBDL extract -->
<types>
<xsd: schena tar get Nanespace="...">
<!-- elenent declarations -->
<xsd: el ement nanme="get Pri ce"
type="tns:getPriceType"/>
<xsd: el ement nane="get Pri ceResponse"
type="tns: getPri ceResponseType"/>
<xsd: el ement nane="Ti cker Excepti on"
type="tns: Ti cker Excepti onType"/ >

<!-- type definitions -->

</ xsd: schena>
</types>

<message nane="getPrice">
<part nanme="getPrice" elenment="tns:getPrice"/>
</ nessage>

<message nane="get Pri ceResponse">
<part name="get Pri ceResponse" el ement ="t ns: get Pri ceResponse"/ >
</ nessage>

<message nane="Ti cker Excepti on">
<part name="Ti cker Exception" el enent="tns: Ti cker Excepti on"/>
</ nessage>

<port Type name="St ockQuot ePr ovi der" >
<oper ation name="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
<fault nessage="tns: Ti cker Excepti on"/>
</ oper ati on>
</ port Type>

Figure 3.1: Java interface to WSDL portType mapping usingudeent style

April 19, 2006 JAX-WS 2.0 33

Chapter 3. Java to WSDL 1.1 Mapping

O©CoOoO~NOOOTA~,WNPE

34

/'l Java
package com exanpl e;
@\bSer vi ce

public interface StockQuoteProvider {
float getPrice(String tickerSynbol)
throws Ti cker Excepti on;

}
<!-- WBDL extract -->
<types>
<xsd: schema t ar get Nanespace="...">
<!-- elenent declarations -->
<xsd: el ement nane="Ti cker Excepti on"
type="tns: Ti cker Excepti onType"/ >
<!-- type definitions -->
</ xsd: schema>
</types>

<message nane="getPrice">
<part name="ticker Synbol " type="xsd:string"/>
</ nessage>

<message nane="get Pri ceResponse" >
<part name="return" type="xsd:float"/>
</ nessage>

<message nane="Ti cker Excepti on">
<part name="Ti cker Exception" el enent="tns: Ti cker Excepti on"/>
</ nessage>

<port Type nanme="St ockQuot ePr ovi der" >
<oper ation name="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
<fault nessage="tns: Ti cker Exception"/>
</ operati on>
</ port Type>

Figure 3.2: Java interface to WSDL portType mapping usin@ Rfle

JAX-WS 2.0

April 19, 2006

3.6. Method Parameters and Return Type

message or global element declaration for either the dparaiput message, operation output message
or both. The mapping depends on the parameter classificatiej avax. j ws. WebPar amannotation’s
header element MAY be used to map parameters to SOAP headers. Headeneters MUST be included
assoap: header elements in the operation’s input message. jTaeax. | ws. WebResul t annotation’s
header element MAY be used to map results to SOAP headers. HeaddisrédUST be included as
soap: header elements in the operation’s output message.

3.6.1 Parameter and Return Type Classification

Method parameters and return type are classified as follows

i n The value is transmitted by copy from a service client to th I8t is not returned from the service
endpoint to the client.

out The value is returned by copy from an SEI to the client but istramnsmitted from the client to the
service endpoint implementation.

i n/ out The value is transmitted by copy from a service client to teé&hd is returned by copy from the
SEIl to the client.

A methods return type is alwaysut . For method parameters, holder classes are used to detetidn
classification. j avax. xni . ws. Hol der. A parameter whose type is a parameterizadax. xnm . ws-
. Hol der <T> class is classified d@sn/ out orout, all other parameters are classified as

{> Conformance (Parameter classificatiohej avax. j ws. WebPar amannotation (seE_Z.11.4) MAY be
used to specify whether a holder parameter is treatéd/asut or out . If not specified, the default MUST
bei n/ out .

{» Conformance (Parameter naming)hej avax. j ws. WebPar amannotation (sde_Z.11.4) MAY be used to
specify thenane of thewsdl : part or XML Schema element declaration corresponding to a Jazanpeter.

If both the nane and part Nane elements are used in theavax. j ws. WebPar am annotation then the
part Name MUST be used for thesdl : part name attribute and theane element from the annotation
will be ignored. If not specified, the default is “@iy whereN is replaced with the zero-based argument
index. Thus, for instance, the first argument of a methodilveive a default parameter name of “arg0”, the
second one “argl”and so on.

{» Conformance (Result namingThej avax. j ws. WebResul t annotation (seE_Z.11.4) MAY be used to
specify thenane of thewsdl : part or XML Schema element declaration corresponding to the desthod
return type. If both thenane andpart Narme elements are used in theavax. j ws. WebResul t annota-
tions then thepar t Name MUST be used for thesdl : part name attribute and theane elment from the
annotation will be ignored. In the absence of customizatitime default name iset ur n.

& Conformance (Header mapping of parameters and resiiltg.j avax. j ws. WebPar am annotation’s -
header element MAY be used to map parameters to SOAP headers. Headeneters MUST be included
assoap: header elements in the operation’s input message. jTaeax.j ws. WebResul t annotation’s
header element MAY be used to map results to SOAP headers. HeaddtsrddUST be included as
soap: header elements in the operation’s output message.

April 19, 2006 JAX-WS 2.0 35

Chapter 3. Java to WSDL 1.1 Mapping

3.6.2 Use of JAXB

JAXB defines a mapping from Java classes to XML Schema agetstr JAX-WS uses this mapping to
generate XML Schema named type and global element dedasathat are referred to from within the
WSDL nessage constructs generated for each operation.

Three styles of Java to WSDL mapping are supported: documeagped, document bare and RPC. The
styles differ in what XML Schema constructs are generated fmethod. The three styles are described in
the following subsections.

Thej avax. j ws. SOAPBi ndi ng annotation MAY be used to specify at the type level whichestgluse for
all methods it contains or on a per method basis if¢hgl e is docunent .

3.6.2.1 Document Wrapped

This style is identified by favax. j ws. SOAPBi ndi ng annotation with the following properties:sayl e
of DOCUMENT, ause of LI TERAL and apar anmet er St yl e of WRAPPED.

For the purposes of utilizing the JAXB mapping, each metlsabnverted to two Java bean classes: one for
the method input (henceforth called tlemuest beanand one for the method output (henceforth called the
response begn

< Conformance (Default wrapper bean namds)the absence of customizations, the wrapper request bean
class MUST be named the same as the method and the wrappensedpean class MUST be named the
same as the method with a “Response” suffix. The first laifezach bean name is capitalized to follow
Java class naming conventions.

{ Conformance (Default wrapper bean packada)he absence of customizations, the wrapper beans pack-
age MUST be a generat¢@dxws subpackage of the SEI package.

Thej avax. xm . ws. Request W apper andj avax. xn . ws. ResponseW apper annotations (se€_1.3
and[Z%) MAY be used to customize the name of the generategperdean classes.

{ Conformance (Wrapper element namesbhej avax. xnl . ws. Request W apper andj avax. xm . ws-
. ResponseW apper annotations (sde_1.3 ahdl7.4) MAY be used to specify thefipchlname of the ele-
ments generated for the wrapper beans.

& Conformance (Wrapper bean name clagBgnerated bean classes must have unique names within a pack-
age and MUST NOT clash with other classes in that packagesh€during generation MUST be reported

as an error and require user intervention via name custdioniz correct. Note that some platforms do not
distiguish filenames based on case so comparisons MUSTegase.

A request bean is generated containing properties for eadndi n/ out non-header parameter. A re-
sponse bean is generated containing properties for theoghetturn value, eacbut non-header parameter,
andi n/ out non-header parameter. Method return values are represbptenout property named ‘“re-
turn”. The order of the properties in the request bean is éineesas the order of parameters in the method
signature. The order of the properties in the response Isghe property corresponding to the return value
(if present) followed by the properties for the parameterthe same order as the parameters in the method
signature.

The request and response beans are generated with the @goerdpXB customizations to result in a global
element declaration for each bean class when mapped to XMeérga by JAXB. The corresponding global

36 JAX-WS 2.0 April 19, 2006

3.6. Method Parameters and Return Type

element declarations MUST NOT have the nillable attribetd@a value of true. Whereas the element name
is derived from theRequest W apper or ResponseW apper annotations, its type is named according to

the operation name (for the local part) and the target naavesfor the portType that contains the operation

(for the namespace name).

Figure[3.3 illustrates this conversion.

1 float getPrice(@eébParan(name="tickerSynbol") String syn;
2

3 @ Root El enent (nane="get Pri ce", targetNanespace="...")

4 @Xm Type(name="get Price", targetNanespace="...")

5 @Xm Accessor Type(AccessType. Fl ELD)

6 public class GetPrice {

7 @M El enent (name="ti cker Synbol ", target Nanmespace="")

8 public String tickerSynbol;

9 }

11 @ Root El enent (nanme="get Pri ceResponse”, target Namespace="...")
12 @ Type(nane="get Pri ceResponse", target Namespace="...")

13 @ Accessor Type(AccessType. Fl ELD)
14 public class GetPriceResponse {

15 @m El enent (nane="return", targetNanespace="")
16 public float _return;
17}

Figure 3.3: Wrapper mode bean representation of an operatio

When the JAXB mapping to XML Schema is utilized this resuttsgiobal element declarations for the
mapped request and response beans with child elementsfonegthod parameter according to the param-
eter classification:

i n The parameter is mapped to a child element of the global eledexlaration for the request bean.

out The parameter or return value is mapped to a child elemeriteofiobal element declaration for the
response bean. In the case of a parameter, the class of tleeofahe holder class (see section 3.6.1)
is used for the mapping rather than the holder class itself.

i n/ out The parameter is mapped to a child element of the global eiedezlarations for the request and
response beans. The class of the value of the holder classdsgori-3.611) is used for the mapping
rather than the holder class itself.

The global element declarations are used as the values abttie part elementsl enent attribute, see
figure[31.

3.6.2.2 Document Bare

This style is identified by favax. j ws. SOAPBi ndi ng annotation with the following properties:sayl e
of DOCUMENT, ause of LI TERAL and apar anet er St yl e of BARE.

In order to qualify for use of bare mapping mode a Java methast falfill all of the following criteria:

1. It must have at most onien ori n/ out non-header parameter.

April 19, 2006 JAX-WS 2.0 37

Chapter 3. Java to WSDL 1.1 Mapping

2. If it has a return type other thami d it must have no n/ out or out non-header parameters.

3. Ifit has a return type ofoi d it must have at most orien/ out or out non-header parameter.

If present, the type of the input parameter is mapped to a daxhl Schema type using the mapping
defined by JAXB. If the input parameter is a holder class ttienclass of the value of the holder is used
instead.

If present, the type of the output parameter or return vauaapped to a named XML Schema type using
the mapping defined by JAXB. If an output parameter is used the class of the value of the holder class
is used.

A global element declaration is generated for the methodtiapd, in the absence ofv@&bPar amanno-
tation, its local name is equal to the operation name. A dlelEment declaration is generated for the
method output and, in the absence afébPar amor WebResul t annotation, the local name is equal to the
operation name suffixed with “Response”. The type of the édnents depends on whether a type was
generated for the corresponding element or not:

Named type generatedThe type of the global element is the named type.

No type generated The type of the element is an anonymous empty type.

The namespace name of the input and output global elemetite igalue of the ar get Nanespace at-
tribute of the WSDLdef i ni ti ons element.

The nillable attribute of the generated global elements Mi&ve a value of true if and only if the corre-
sponding Java types are reference types.

The global element declarations are used as the values wbttie part elementsl enent attribute, see
figure[31.

3.6.2.3 RPC
This style is identified by davax. j ws. SOAPBi ndi ng annotation with the following properties:sayl e
of RPC, ause of LI TERAL and apar amet er St yl e of WRAPPED?.

The Java types of eadm, out andi n/ out parameter and the return value are mapped to named XML
Schema types using the mapping defined by JAXB.dwar andi n/ out parameters the class of the value
of the holder is used rather than the holder itself.

Each method parameter and the return type is mapped to agegssd according to the parameter classif-
ication:

i n The parameter is mapped to a part of the input message.

out The parameter or return value is mapped to a part of the ootpasage.

i n/ out The parameter is mapped to a part of the input and output gessa

The named types are used as the values ofwtfii : part elements ype attribute, see figureZ3.2. The

value of thenane attribute of eaclwsdl : part element is the name of the corresponding method parameter
or “return”for the method return value.

2Use of RPC style requires use 8ARAPPED parameter style. Deviations from this is an error

38 JAX-WS 2.0 April 19, 2006

3.7. Service Specific Exception

Due to the limitations described in section 5.3.1 of the WE&$ic Profile specification (seg! [8]), null values
cannot be used as method arguments or as the return valua freethod which uses the rpc/literal binding.

& Conformance (Null Values in rpc/literal)f a null value is passed as an argument to a method, or returne
from a method, that uses the rpc/literal style, then an impletation MUST throw &ébSer vi ceExcept i on.

3.7 Service Specific Exception

A service specific Java exception is mapped tesdl : f aul t element, ansdl : message element with

a single childwsdl : part element and an XML Schema global element declaration. B : f aul t
element appears as a child of twed| : oper ati on element that corresponds to the Java method that
throws the exception and refers to thedl : message element. Thewsdl : part element refers to an XML
Schema global element declaration that describes the fault

{ Conformance (Exception naminghh the absence of customizations, the name of the globaleziedec-
laration for a mapped exception MUST be the name of the Jaseption. Theg avax. xnil . ws. WebFaul t
annotation MAY be used to customize the local name and naawespame of the element.

JAXB defines the mapping from a Java bean to XML Schema eleheriarations and type definitions
and is used to generate the global element declaration ésatides the fault. For exceptions that match
the pattern described in sectibnl2.5 (i.e. exceptions the¢ laget Faul t | nf o method andrebFaul t
annotation), thd-aultBeanis used as input to JAXB when mapping the exception to XML &wde For
exceptions that do not match the pattern described in sd2ifh JAX-WS maps those exceptions to Java
beans and then uses those Java beans as input to the JAXBngiafie following algorithm is used to
map non-matching exception classes to the correspondiagbdns for use with JAXB:

1. In the absence of customizations, the name of the bearm isaime as the name of the Exception
suffixed with “Bean”.

2. In the absence of customizations, the package of the Bemménerateflaxws subpackage of the
SEl package. E.g. if the SEI packagecism exanpl e. st ockquot e then the package of the bean
would becom exanpl e. st ockquot e. j axws.

3. For each getter in the exception and its superclassespany of the same type and name is added
to the bean. Theget Cause, get Local i zedMessage andget St ackTr ace getters fromj ava-
.l ang. Thr owabl e and theget Cl ass getter fromj ava. | ang. Obj ect are excluded from the list
of getters to be mapped.

4. The bean is annotated with a JAX&n Type annotation whosaane property is set to the name
of the exception and whoseanespace property is set to the namespace name mapped from the
exception package name. Additionally, @ Type annotation has pr opOr der property whose
value is an array containing the names of all the propertigseoexception class that were mapped
in the previous bullet point, sorted lexicographically @ctng to the Unicode value of each of their
characters (i.e. using the same algorithm that #ite j ava. | ang. Stri ng. conpar eTo(Stri ng)
method uses).

5. The bean is annotated with a JAX&n Root El enent annotation whoseane property is set, in
the absence of customizations, to the name of the exception.

April 19, 2006 JAX-WS 2.0 39

Chapter 3. Java to WSDL 1.1 Mapping

{ Conformance (Fault bean name clas®enerated bean classes must have unique names within gypacka
and MUST NOT clash with other classes in that package. Céadheng generation MUST be reported as
an error and require user intervention via name customizdti correct. Note that some platforms do not
distiguish filenames based on case so comparisons MUSTegase.

Figure[3.4 illustrates this mapping.

1 @+ebFaul t (nane="UnknownTi cker Fault", target Namespace="...")

2 public class UnknownTi cker extends Exception {

3 ..

4 public UnknownTi cker(Sting ticker) { ... }

5 public UnknownTi cker(Sting ticker, String nessage) { ... }

6 public UnknownTi cker(Sting ticker, String nessage, Throwabl e cause)
7 { ...}

8 public String getTicker() { ... }

9 1}

11 @ Root El ement (name="UnknownTi cker Faul t" t ar get Namespace="...")

12 @Xm Accessor Type(AccessType. Fl ELD)
13 @ Type(name="UnknownTi cker", namespace="...",

14 propOrder ={"nessage", "ticker"})

15 public class UnknownTi cker Bean {

17 public UnknownTi ckerBean() { ... }

18 public String getTicker() { ... }

19 public void setTicker(String ticker) { ... }
20 public String get Message() { ... }

21 public void set Message(String nessage) { ... }
22 '}

Figure 3.4: Mapping of an exception to a bean for use with JAXB

3.8 Bindings

In WSDL 1.1, an abstract port type can be bound to multipléguals.

& Conformance (Binding selectionAn implementation MUST generate a WSDL binding according to
the rules of the binding denoted by tBiendi ngType annotation (se€_4.8), if present, otherwise the default
is the SOAP 1.1/HTTP binding (sE€]10).

Each protocol binding extends a common extensible skeitanture and there is one instance of each such
structure for each protocol binding. An example of a poretgmd associated binding skeleton structure is
shown in figurd_3b.

The common skeleton structure is mapped from Java as deddrilthe following subsections.

3.8.1 Interface

A Java SEIl is mapped tovsd| : bi ndi ng element and zero or movesdl : port extensibility elements.

40 JAX-WS 2.0 April 19, 2006

3.9. Generics

1 <portType nane="St ockQuot eProvi der" >

2 <operation nane="getPrice" paraneterOder="tickerSynbol ">
3 <i nput nessage="tns:getPrice"/>

4 <out put nessage="tns: get Pri ceResponse"/ >

5 <fault nmessage="tns:unknownti cker Exception"/>

6 </ operati on>

7 <lportType>

8

9 <bi ndi ng name="St ockQuot ePr ovi der Bi ndi ng" >

10 <l-- binding specific extensions possible here -->

11 <operation name="getPrice">

12 <!-- binding specific extensions possible here -->

13 <i nput nessage="tns:getPrice">

14 <l-- binding specific extensions possible here -->
15 </i nput >

16 <out put nessage="tns: get Pri ceResponse" >

17 <l-- binding specific extensions possible here -->
18 </ out put >

19 <fault nessage="tns: unknownti cker Exception">

20 <l-- binding specific extensions possible here -->
21 </fault>

22 </ operati on>

23 </ bi ndi ng>

Figure 3.5: WSDL portType and associated binding

Thewsdl : bi ndi ng element acts as a container for other WSDL elements thathiegerm the WSDL de-
scription of the binding to a protocol of the correspondisgll : port Type. The value of th@ane attribute
of thewsdl : bi ndi ng is not significant, by convention it contains the qualifie@me of the corresponding
wsdl : por t Type suffixed with “Binding”.

Thewsdl : port extensibility elements define the binding specific endpa@iddress for a given port, see
sectior 310

3.8.2 Method and Parameters

Each method in a Java SEI is mapped tesdl : oper ati on child element of the correspondingdl -

: bi ndi ng. The value of thenane attribute of thewsdl : oper ati on element is the same as the corre-
spondingwsdl : oper at i on element in the boundsdl : port Type. Thewsdl| : oper ati on element has
wsdl : i nput, wsdl : out put, andwsdl : f aul t child elements if they are present in the corresponding
wsdl : oper ati on child element of thewsdl : port Type being bound.

3.9 Generics

In JAX-WS when starting from Java and if generics are usetiéndocument wrapped case, impelementa-
tions are required to use type erasure(see JLS sectionddefiaition of Type Erasure) when generating
the request / response wrapper beans and exception beaps iexte case dfol | ecti ons. Type erasure

is a mapping from parameterized types or type variablespestyhat are never parameterized types or type
variables. Erasure basically gets rid of all the generie tinformation from the runtime representation. In
the case ofol | ect i on instead of applying erasure on t@el | ect i on itself, erasure would be applied to

April 19, 2006 JAX-WS 2.0 41

Chapter 3. Java to WSDL 1.1 Mapping

the type ofCol | ect i on i.e it would beCol | ect i on<er asur e(T) >. The following code snippets shows
the result of erasure on a wrapper bean that is generated wgirngenerics:

shape. set Col or (col or);
return shape;

A WNPE

The generated wrapper bean would be

public <T extends Shape> T setCol or (T shape, Color color) {

1 @ Root El ement (name = "setCol or", nanmespace = M)
2 @Xm Accessor Type(AccessType. Fl ELD)

3 @m Type(nane = "set Col or", namespace =" ")
4 public class SetColor {

5

6 @m El enent (nane = "arg0", nanespace = "")
7 privat e Shape argO;

8

9 @mM El enent (nane = "argl", nanespace = "")
10 private Col or argO;

11

12

13 publ i c Shape get Arg0() {

14 return this.argo;

15 }

16

17 public void set ArgO(Shape arg0) {

18 this.arg0 = argO;

19 }

20

21 public Col or getArgl() {

22 return this.argil;

23 }

24

25 public void setArgl(Col or argl) {

26 this.argl = argl;

27 }

28

29 }

The following code snippets shows the resulting wrappen lvdzen using Collections:

1 public List<Shape> echoShapeli st (List<Shape> list) {

2 return |ist;
3}

The generated wrapper bean would be

@XM Root El enent (nane = "echoShapelLi st",
@Xm Accessor Type(AccessType. FI ELD)

A WN PP

public class EchoShapelLi st {

nanespace = "...")

@ Type(name = "echoShapeList", nanmespace = "...")

42 JAX-WS 2.0

April 19, 2006

3.9. Generics

5

6 @m El enent (nane = "arg0", nanespace = "")
7 private List<Shape> argo;

8

9 public List<Shape> getArgO() {

10 return this.argo;

11 }

12

13 public void set ArgO(List<Shape> arg0) {
14 this.arg0 = arg0;

15 }

16 }

17

1 public <T> T echoTList(List<T> list) {

2 if (list.size() == 0)

3 return null;

4 return list.iterator().next();

5 1}

The generated wrapper bean would be

1 @ Root El enent (nane = "echoTLi st", namespace = "...")
2 @Xm Accessor Type(AccessType. FlI ELD)

3 @m Type(nane = "echoTList", nanespace = "...")
4 public class EchoTList {

5

6 @m El enent (nane = "arg0", nanespace = "")
7 private List<Object> arg0;

8

9 public List<Object> getArg0() {

10 return this.argo;

11 }

12

13 public void set ArgO(List<Onject> arg0) {

14 this.arg0 = argO;

15 }

16 }

17

1 public List<? extends Shape> set Area(List<? extends Shape> list) {
2 Iterator iterator = list.iterator();

3 whil e(iterator. haNext()) {

4 iterator.next().setArea(...);

5 }

6 return list;

70}

The generated wrapper bean would be

1 @ Root El ement (name = "set Area", namespace = "...")
2 @M Accessor Type(AccessType. FI ELD)
3 @ Type(nane = "setArea", nanespace = "...")

April 19, 2006 JAX-WS 2.0 43

Chapter 3. Java to WSDL 1.1 Mapping

4 public class SetArea {

5

6 @m El enent (nane = "arg0", nanespace = "")
7 private List<Shape> arg0

8

9 public List<Shape> getArgO() {

10 return this.argo;

11 }

12

13 public void set ArgO(List<Shape> arg0) {
14 this.arg0 = arg0;

15 }

16 }

3.10 SOAP HTTP Binding

This section describes the additional WSDL binding elemegenerated when mapping Java to WSDL 1.1
using the SOAP HTTP binding.

¢ Conformance (SOAP binding supportinplementations MUST be able to generate SOAP HTTP bind-
ings when mapping Java to WSDL 1.1.

Figure[3.6 shows an example of a SOAP HTTP binding.

1 <bi ndi ng name="St ockQuot ePr ovi der Bi ndi ng" >

2 <soap: bi ndi ng

3 transport="http://schemas. xnm soap. or g/ soap/ http"
4 styl e="docunent "/ >

5 <operation name="getPrice">

6 <soap: operation styl e="docunent|rpc"/>

7 <i nput nessage="tns:getPrice">

8 <soap: body use="literal"/>

9 </i nput >

10 <out put nessage="tns: get Pri ceResponse" >

11 <soap: body use="literal"/>

12 </ out put >

13 <fault nessage="tns: unknownti cker Exception">
14 <soap:fault use="literal"/>

15 </faul t>

16 </ operati on>

17 </ bi ndi ng>

Figure 3.6: WSDL SOAP HTTP binding

3.10.1 Interface

A Java SEI is mapped to soap: bi ndi ng child element of the correspondingdl : bi ndi ng element
plus asoap: addr ess child element of any correspondingdl : port element (see secti@n3111).

The value of the r ansport attribute of thesoap: bi ndi ngishttp://schemas. xm soap. or g/ soap-
/ ht t p. The value of thest ylI e attribute of thesoap: bi ndi ng is eitherdocunent orr pc.

44 JAX-WS 2.0 April 19, 2006

3.11. Service and Ports

& Conformance (SOAP binding style requiredinplementations MUST include st yl e attribute on a
generatedoap: bi ndi ng.

3.10.2 Method and Parameters

Each method in a Java SEI is mapped teoap: oper at i on child element of the correspondingdl -
:operation. The value of thest yl e attribute of thesoap: operati on is docunent orrpc. If not
specified, the value defaults to the value of the/l e attribute of thesoap: bi ndi ng. WS-I Basic Prof-
ile[8] requires that all operations within a given SOAP HTHIRding instance have the same binding style.

The parameters of a Java method are mappesotp: body or soap: header child elements of the
wsdl : i nput andwsdl : out put elements for eachsdl : oper at i on binding element. The value of the
use attribute of thesoap: body is! i t er al . Figure[3.¥ shows an example using document style, figie 3.
shows the same example using rpc style.

3.11 Service and Ports

A Java service implementation class is mapped to a stk : servi ce element that is a child of a
wsdl : defi ni ti ons element for the appropriate target namespace. The latteiped from the value of
thet ar get Namespace element of theAtbSer vi ce annotation, if non-empty value, otherwise from the
package of the Java service implementation class accordlitihg rules in sectiop3.2.

In mapping a@\ébSer vi ce-annotated class (s€€13.3) tawvad| : servi ce, theservi ceNanme element
of the WebSer vi ce annotation are used to derive the service name. The valugeofaine attribute of
thewsdl : servi ce element is computed according to the JSR-181 [13] spetidita It is given by the
servi ceNane element of therdebSer vi ce annotation, if present with a non-default value, otherviiise
name of the implementation class with the “Service”sufispanded to it.

{ Conformance (Service creationinplementations MUST be able to map classes annotatedivéjtat ax-
. j ws. WebSer vi ce annotation to WSDIwsdl : ser vi ce elements.

A WSDL 1.1 service is a collection of relateddl : port elements. Ansdl : port element describes a
port type bound to a particular protocolyad! : bi ndi ng) that is available at particular endpoint address.

Each desired port is represented bwsall : port child element of the singlesdl : servi ce element
mapped from the Java package. JAX-WS 2.0 allows specifyimg port of one binding type for each
service defined by the application. Implementations MAYart additional ports, as long as their names
do not conflict with the standard one.

{ Conformance (Port selectionl:hepor t Narre element of the\ebSer vi ce annotation, if present, MUST
be used to derive the port name to use in WSDL. In the absena@amft Name element, an implementa-
tion MUST use the value of theane element of theAébSer vi ce annotation, if present, suffixed with
“Port”. Otherwise, an implementation MUST use the simplmaaf the class annotated witidbSer vi ce
suffixed with “Port”.

¢ Conformance (Port binding)The WSDL port defined for a service MUST refer to a bindingted type
indicated by theBi ndi ngType annotation on the service implementation class[(Sde 3.8).

Binding specific child extension elements of thedl : port element define the endpoint address for a port.
E.g. see theoap: addr ess element described in sectibn-3.70.1.

April 19, 2006 JAX-WS 2.0 45

Chapter 3. Java to WSDL 1.1 Mapping

©CoOo~NOoOULh~, WNE

46

<types>
<schemm t ar get Namespace="...">
<xsd: el ement nanme="getPrice" type="tns:getPriceType"/>
<xsd: conpl exType nanme="get Pri ceType">
<xsd: sequence>
<xsd: el ement nane="ticker Synbol " type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nanme="get Pri ceResponse"
type="tns: getPri ceResponseType"/>
<xsd: conpl exType nane="get Pri ceResponseType" >
<xsd: sequence>
<xsd: el ement name="return" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schema>
</types>

<message nane="getPrice">
<part name="getPrice"
el ement="tns:getPrice"/>
</ nessage>

<message nane="get Pri ceResponse">
<part name="get Pri ceResponse" el enment ="t ns: get Pri ceResponse"/ >
</ nessage>

<port Type name="St ockQuot ePr ovi der" >
<operation nane="getPrice" paraneterOder="tickerSynbol ">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng name=" St ockQuot ePr ovi der Bi ndi ng" >
<soap: bi ndi ng
transport="http://schemas. xnl soap. org/ soap/ http" styl e="docunment"/>
<operation nane="getPrice" paraneterOder="tickerSynbol ">
<soap: operati on/ >
<i nput nessage="tns:getPrice">

<soap: body use="literal"/>
</i nput >
<out put nessage="tns: get Pri ceResponse" >
<soap: body use="literal"/>
</ out put >
</ oper ati on>

</ bi ndi ng>

Figure 3.7: WSDL definition using document style

JAX-WS 2.0 April 19, 2006

3.11. Service and Ports

©CoOoO~NOULA~,WNE

<t ypes>
<schemm t ar get Namespace="...">
<xsd: el ement nanme="getPrice" type="tns:getPriceType"/>
<xsd: conpl exType nanme="get Pri ceType">
<xsd: sequence>
<xsd: el enent form="unqualified" name="ticker Synbol "
type="xsd: string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="get Pri ceResponse"
type="tns: getPri ceResponseType"/>
<xsd: conpl exType nane="get Pri ceResponseType" >
<xsd: sequence>
<xsd: el ement form="unqualified" name="return"
type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schema>
</types>

<message nane="getPrice">
<part name="ti cker Synbol " type="xsd:string"/>
</ nessage>

<message nane="get Pri ceResponse">
<part name="result" type="xsd:float"/>
</ nessage>

<port Type name="St ockQuot ePr ovi der" >
<oper ation name="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng nanme=" St ockQuot ePr ovi der Bi ndi ng" >
<soap: bi ndi ng

transport="http://schemas. xnl soap. org/ soap/ http" style="rpc"/>

<operation name="getPrice">
<soap: operati on/ >
<i nput nessage="tns:getPrice">

<soap: body use="literal"/>
</i nput >
<out put nessage="tns: get Pri ceResponse" >
<soap: body use="literal"/>
</ out put >
</ oper ati on>

</ bi ndi ng>

Figure 3.8: WSDL definition using rpc style

April 19, 2006 JAX-WS 2.0

47

Chapter 3. Java to WSDL 1.1 Mapping

48

JAX-WS 2.0

April 19, 2006

Chapter 4

Client APlIs

This chapter describes the standard APIs provided fortdigle use of JAX-WS. These APIs allow a client
to create proxies for remote service endpoints and dyndisnimanstruct operation invocations.

Conformance requirements in this chapter use the term &mephtation’ to refer to a client side JAX-WS
runtime system.

4.1 javax.xml.ws.Service

Ser vi ce is an abstraction that represents a WSDL service. A WSBilvi ce is a collection of related
ports, each of which consists of a port type bound to a paatiqorotocol and available at a particular
endpoint address.

Ser vi ce instances are created as described in seCfion 4é&rl.i ce instances provide facilities to:
 Create an instance of a proxy via one of e Port methods. See secti@n 4.3 for information on
proxies.

» Create i spat ch instance via ther eat eDi spat ch method. See sectidn 4.3 for information on
theDi spat ch interface.

» Create a new port via treedldPor t method. Such ports only include binding and endpoint ingttiam
and are thus only suitable for creatibgspat ch instances since these do not require WSDL port type
information.

» Configure per-service, per-port, and per-protocol mgssendlers using a handler resolver (see sec-

tion [£1.3).

» Configure thg ava. util . concurrent. Execut or to be used for asynchronous invocations (see

sectio4.T1).

{ Conformance (Service completeness)Ser vi ce implementation MUST be capable of creating prox-
ies,Di spat ch instances, and new ports.

All the service methods except the staticeat e methods and the constructors delegatgdeax. xni -
. Ws. spi . Servi ceDel egat e, see sectiofn 8 3.

April 19, 2006 JAX-WS 2.0 49

Chapter 4. Client APIs

4.1.1 Service Usage
4.1.1.1 Dynamic case

In the dynamic case, when nothing is generated, a J2SE sesli@nt usesSer vi ce. cr eat e to create
Ser vi ce instances, the following code illustrates this process.

1 URL wsdl Location = new URL("http://exanple.org/ nmy.wsdl");
2 QNane serviceName = new QNane("http://exanple.org/sanple", "M/Service");
3 Service s = Service.create(wsdl Location, serviceNane);

The followingcr eat e methods may be used:

creat e(URL wsdl Location, QNane servi ceNane) Returns aservice object for the specified WSDL
document and service name.

creat e(QNane servi ceNane) Returns a service object for a service with the given nameWS$®L
document is attached to the service.

{ Conformance (Service Creation Failuréf):a cr eat e method fails to create a service object, it MUST
throwWebSer vi ceExcept i on. The cause of that exception SHOULD be set to an exceptidmpthaides
more information on the cause of the error (e.gl @&xcepti on).

4.1.1.2 Static case

When starting from a WSDL document, a concrete service impfegation class MUST be generated as
defined in sectiofi.2]17. The generated implementation eléssave two public constructors, one with no
arguments and one with two arguments, representing thelacation (g ava. net . URL) and the service
name (g avax. xnm . namespace. QNane) respectively.

When using the no-argument constructor, the WSDL locatimh service name are implicitly taken from
theWebSer vi ceCl i ent annotation that decorates the generated class.

The following code snippet shows the generated constrsictor

1 // Cenerated Service C ass

2

3 @\ebServicedient(nanme="St ockQuot eService",

4 t ar get Nanespace="htt p:// exanpl e. com st ocks",

5 wsdl Locati on="http://exanpl e. com st ocks. wsdl ")
6 public class StockQuoteService extends javax.xm .ws. Service {

7 public StockQuoteService() {

8 super (new URL("http://exanpl e. com st ocks. wsdl "),

9 new QNanme("http://exanpl e. com st ocks",

10 " St ockQuot eServi ce"));

11 }

13 public StockQuoteService(String wsdl Locati on, QNane servi ceName) {
14 super (wsdl Locati on, servi ceNane);

15 }

18 }

50 JAX-WS 2.0 April 19, 2006

4.1. javax.xml.ws.Service

4.1.2 Provider and Service Delegate

Internally, theSer vi ce class delegates all of its functionality tear vi ceDel egat e object, which is part
of the SPI used to allow pluggability of implementations.

For this to work, evenSer vi ce object internally MUST hold a reference tojavax. xm . ws. spi -
. Ser vi ceDel egat e object (se€6l3) to which it delegates every non-static atedall. The field used to
hold the reference MUST be private.

The delegate is set when a n&er vi ce instance is created, which must necessarily happen when the
protected, two-argument constructor defined on3tevi ce class is called. The constructor MUST obtain

a Provider instance (s€e62.2) and caltiteat eSer vi ceDel egat e method, passing the two arguments
received from its caller and the class object for the instdraing created (i.@.hi s. get Cl ass()).

In order to ensure that the delegate is properly construdtesl staticcr eat e method defined on the
Servi ce class MUST call the protected constructor to create a newicgenstance, passing the same
arguments that it received from the application.

The following code snippet shows an implementation of$hevi ce API that satisfies the requirements
above:

1

2 public class Service {

3

4 private ServiceDel egate del egat e;

5

6 protected Service(java. net.URL wsdl Docunent Locati on,

7 QName servi ceNane) {

8 del egate = Provider. provider()

9 . creat eServi ceDel egat e(wsdl Docunent Locat i on
10 servi ceNane,

11 this.getd ass());
12 }

14 public static Service create(java.net.URL wsdl Docunent Locati on,
15 QNane servi ceNane) {

16 return new Servi ce(wsdl Docunent Locati on, servi ceNane);

17 }

19 /1 begin del egat ed met hods
21 public <T> T getPort (C ass<T> servi ceEndpoi ntlnterface) {
22 return del egate. getPort (servi ceEndpoi ntinterface);
23 }
26 }

4.1.3 Handler Resolver

JAX-WS provides a flexible plug-in framework for messagecpssing modules, known as handlers, that
may be used to extend the capabilities of a JAX-WS runtiméesys Chaptef]9 describes the handler
framework in detail. ASer vi ce instance provides access tdHandl er Resol ver via a pair ofget -

Handl er Resol ver /set Handl er Resol ver methods that may be used to configure a set of handlers on a

April 19, 2006 JAX-WS 2.0 51

Chapter 4. Client APIs

per-service, per-port or per-protocol binding basis.

When aSer vi ce instance is used to create a proxy obisspat ch instance then the handler resolver
currently registered with the service is used to createdhaired handler chain. Subsequent changes to the
handler resolver configured forSer vi ce instance do not affect the handlers on previously createxigs,

or Di spat ch instances.

4.1.4 Executor

Ser vi ce instances can be configured withj ava. util . concurrent. Execut or. The executor will
then be used to invoke any asynchronous callbacks requiegttte application. Theet Execut or and
get Execut or methods ofSer vi ce can be used to modify and retrieve the executor configuredafo
service.

{ Conformance (Use of Executor)f an executor object is successfully configured for use Beavice via
theset Execut or method, then subsequent asynchronous callbacks MUST eréel using the specif-
ied executor. Calls that were outstanding at the timestiteExecut or method was called MAY use the
previously set executor, if any.

{ Conformance (Default Executor):acking an application-specified executor, an implemigoiaMUST
use its own executor, jgava. uti | . concurrent . Thr eadPool Execut or or analogous mechanism, to
deliver callbacks. An implementation MUST NOT use applmaiprovided threads to deliver callbacks,
e.g. by "borrowing” them when the application invokes a régraperation.

4.2 javax.xml.ws.BindingProvider

The Bi ndi ngPr ovi der interface represents a component that provides a protanding for use by
clients, it is implemented by proxies and is extended byDhepat ch interface. Figuré_4l1 illustrates
the class relationships.

TheBi ndi ngPr ovi der interface provides methods to obtain Biendi ng and to manipulate the binding
providers context. Further details @nndi ng can be found in section8.1. The following subsection
describes the function and use of context vldtindi ngPr ovi der instances.

4.2.1 Configuration

Additional metadata is often required to control inforroatexchanges, this metadata forms the context of
an exchange.

A Bi ndi ngPr ovi der instance maintains separate contexts for the request apdnge phases of a mes-
sage exchange with a service:

Request The contents of the request context are used to initialieertessage context (see secfion 9.4.1)
prior to invoking any handlers (see chagdiér 9) for the outidomessage. Each property within the
request context is copied to the message context with a sfdpeNDLER.

ResponseThe contents of the message context are used to initiakzeeponse context after invoking any
handlers for an inbound message. The response contextisiiiptied and then each property in the
message context that has a scopgaRrHLI CATI ONis copied to the response context.

52 JAX-WS 2.0 April 19, 2006

4.2. javax.xml.ws.BindingProvider

Binding

has-a

Map < String,Object >

BindingProvider y (Request Context)

get Bi ndi ng() : Bi ndi ng has-a
Map < String,Object >
implements extends (Response Context)
Proxy Dispatch

Figure 4.1: Binding Provider Class Relationships

& Conformance (Message context decoupliniglodifications to the request context while previously in-
voked operations are in-progress MUST NOT affect the cdstehthe message context for the previously
invoked operations.

The request and response contexts are ofjtywa. uti |l . Map<Stri ng, Obj ect > and are obtained using
theget Request Cont ext andget ResponseCont ext methods oBi ndi ngPr ovi der .

In some cases, data from the context may need to accompamgniation exchanges. When this is required,
protocol bindings or handlers (see chaffier 9) are respenfib annotating outbound protocol data units
and extracting metadata from inbound protocol data units.

Note: An example of the latter usage: a handler in a SOAP bindindhimigroduce a header into a SOAP
request message to carry metadata from the request comexnight add metadata to the response context
from the contents of a header in a response SOAP message.

4.2.1.1 Standard Properties

Table[Z1 lists a set of standard properties that may be satBdmdi ngPr ovi der instance and shows
which properties are optional for implementations to suppo

Table 4.1: Standardi ndi ngPr ovi der properties.

Name Type Mandatory Description

j avax. xm . ws. servi ce. endpoi nt
Continued on next page

April 19, 2006 JAX-WS 2.0 53

Chapter 4. Client APIs

Table 4.1 — continued from previous page

Name Type Mandatory Description

. addr ess String Y The address of the service endpoint as
a protocol specific URI. The URI
scheme must match the protocol
binding in use.

javax.xm .ws. security.auth

. user nane String Y Username for HTTP basic
authentication.

. passwor d String Y Password for HTTP basic
authentication.

j avax. xm . ws. sessi on

. mai ntain Boolean Y Used by a client to indicate whether it
is prepared to participate in a service
endpoint initiated session. The default
value isf al se.

j avax. xm . ws. soap. htt p. soapacti on

. use Boolean N Controls whether ti&0APAct i on
HTTP header is used in SOAP/HTTP
requests. Default value fsal se.

Luri String N The value of th&0APAct i on HTTP
header if thg avax. xm . ws. soap-
. http. soapacti on. use property is
set tot r ue. Default value is an empty
string.

& Conformance (RequireBl ndi ngPr ovi der properties): An implementation MUST support all proper-
ties shown as mandatory in tahlel4.1.

Note that properties shown as mandatory are not required firdsent in any particular context; however,
if present, they must be honored.

¢ Conformance (Option&i ndi ngPr ovi der properties): An implementation MAY support the proper-
ties shown as optional in tadle’¥.1.

4.2.1.2 Additional Properties

{ Conformance (Additional context propertiedinplementations MAY define additional implementation
specific properties not listed in tadle¥.1. The java.* aanebik.* namespaces are reserved for use by Java
specifications.

Implementation specific properties are discouraged as lthit application portability. Applications and
binding handlers can interact using application specifapprties.

4.2.2 Asynchronous Operations

Bi ndi ngPr ovi der instances may provide asynchronous operation capakilfithen used, asynchronous
operation invocations are decoupled from &iendi ngPr ovi der instance at invocation time such that

54 JAX-WS 2.0 April 19, 2006

4.2. javax.xml.ws.BindingProvider

the response context is not updated when the operation etesplinstead a separate response context is
made available using theesponse interface, see sectiofs 213.4 dnd 4.3.3 for further detailthe use of
asynchronous methods.

& Conformance (Asynchronous response contekbje local response context oBandi ngPr ovi der in-
stance MUST NOT be updated on completion of an asynchronpesation, instead the response context
MUST be made available viaResponse instance.

When using callback-based asynchronous operations, danmeptation MUST use théxecut or set on
the service instance that was used to create the proRysyat ch instance being used. See 411.4 for more
information on configuring th&xecut or to be used.

4.2.3 Proxies

Proxies provide access to service endpoint interfaceséitma without requiring static generation of a stub
class. Se¢ava.l ang.refl ect. Proxy for more information on dynamic proxies as supported by the
JDK.

{ Conformance (Proxy supportin implementation MUST support proxies.

{ Conformance (Implementirigi ndi ngPr ovi der): An instance of a proxy MUST implemeptvax-
. xm . ws. Bi ndi ngProvider.

A proxy is created using thget Port methods of &er vi ce instance:

T get Port (O ass<T> sei) Returns a proxy for the specified SEI, tBer vi ce instance is responsible
for selecting the port (protocol binding and endpoint addye

T getPort (QNanme port, Cl ass<T> sei) Returns a proxy for the endpoint specifiedfoyr t . Note
that the namespace componenpoft is the target namespace of the WSDL definitions document.

The ser vi ceEndpoi nt I nt er f ace parameter specifies the interface that will be implemerigdhe
proxy. The service endpoint interface provided by the tlieeds to conform to the WSDL to Java mapping
rules specified in chaptéf 2 (WSDL 1.1). Creation of a proag il if the interface doesn’t conform to the
mapping or if any WSDL related metadata is missing from3bevi ce instance.

{ ConformanceSer vi ce. get Por t failure): If creation of a proxy fails, an implementation MUST throw
javax. xml . ws. WebSer vi ceExcept i on. The cause of that exception SHOULD be set to an exception
that provides more information on the cause of the error. @ OExcept i on).

An implementation is not required to fully validate the seevendpoint interface provided by the client
against the corresponding WSDL definitions and may choogaplement any validation it does require in
an implementation specific manner (e.g., lazy and eagéetatain are both acceptable).

4.2.3.1 Example
The following example shows the use of a proxy to invoke a weibet Last Tr adePri ce) on a service

endpoint interfacecom exanpl e. St ockQuot ePr ovi der). Note that no statically generated stub class is
involved.

April 19, 2006 JAX-WS 2.0 55

Chapter 4. Client APIs

javax.xm . ws. Servi ce service = ...;
com exanpl e. St ockQuot eProvi der proxy = service. get Port (port Nane,

com exanpl e. St ockQuot eProvi der. cl ass)
javax. xm . ws. Bi ndi ngProvi der bp = (javax.xm .ws. Bi ndi ngProvi der) pr oxy;
Map<Stri ng, Obj ect > context = bp. get Request Cont ext () ;
cont ext.setProperty("javax. xm . ws. sessi on. mai ntai n", Bool ean. TRUE);
proxy. get Last TradePri ce(" ACMVE") ;

NOo o~ wWNRE

Lines 1-3 show how the proxy is created. Lines 4—6 performesoanfiguration of the proxy. Lines 7
invokes a method on the proxy.

4.2.4 Exceptions

All methods of an SEI can throywavax. xm . ws. WebSer vi ceExcepti on and zero or more service
specific exceptions.

{ Conformance (Remote Exceptionsj:an error occurs during a remote operation invocation, raplé-
mention MUST throw a service specific exception if possiliethe error cannot be mapped to a service
specific exception, an implementation MUST throwPreot ocol Except i on or one of its subclasses, as
appropriate for the binding in use. See secfion 6.4.1 forendetails.

& Conformance (Exceptions During Handler Processiggceptions thrown during handler processing on
the client MUST be passed on to the application. If the exoepih question is a subclass \wébSer vi ce-
Except i on then an implementation MUST rethrow it as-is, without angdiidnal wrapping, otherwise it
MUST throw avebSer vi ceExcept i on whose cause is set to the exception that was thrown durindjdran
processing.

< Conformance (Other Exceptiondfor all other errors, i.e. all those that don’t occur as pad temote
invocation or handler processing, an implementation MU8®wW aWebSer vi ceExcept i on whose cause
is the original local exception that was thrown, if any.

For instance, an error in the configuration of a proxy inseamay result in &¢bSer vi ceExcept i on
whose cause isjaava. | ang. | | | egal Ar gument Except i on thrown by some implementation code.

4.3 javax.xml.ws.Dispatch

XML Web Services use XML messages for communication betvgeevices and service clients. The higher
level JAX-WS APIs are designed to hide the details of comvgibetween Java method invocations and the
corresponding XML messages, but in some cases operatifg ML message level is desirable. The

Di spat ch interface provides support for this mode of interaction.

& Conformancel§ spat ch support): Implementations MUST support thavax. xnl . ws. Di spat chin-
terface.

Di spat ch supports two usage modes, identified by the consjantax. xnl . ws. Ser vi ce. Mbde. MESSAGE
andj avax. xm . ws. Servi ce. Mode. PAYLOADrespectively:

Messageln this mode, client applications work directly with protdespecific message structures. E.g.,
when used with a SOAP protocol binding, a client applicatrevuld work directly with a SOAP
message.

56 JAX-WS 2.0 April 19, 2006

4.3. javax.xml.ws.Dispatch

Message Payloadin this mode, client applications work with the payload ofss&ges rather than the
messages themselves. E.g., when used with a SOAP protaatihyj a client application would
work with the contents of the SOABbdy rather than the SOAP message as a whole.

Di spat ch is a low level API that requires clients to construct messagenessage payloads as XML and
requires an intimate knowledge of the desired message dogmhgtructure.Di spat ch is a generic class
that supports input and output of messages or message pgaybany type. Implementations are required
to support the following types of object:

javax. xnml . transform Source Use ofSour ce objects allows clients to use XML generating and con-
suming APIs directly. Sour ce objects may be used with any protocol binding in either ngssa
or message payload mode. When used with the HTTP bindingctssgetei1ll) in payload mode,
the HTTP request and response entity bodies must contain Hikéctly or a MIME wrapper with
an XML root part. Anul | value forSour ce is allowed to make it possible to invoke an HTTP
GET method in the HTTP Binding case. WebSer vi ceExcepti on MUST be thrown when a
Di spat ch<Sour ce> is invoked and the Service returns a MIME message. When usetkssage
mode, if the message is not an XML messag@bSer vi ceExcepti on MUST be thrown.

JAXB Objects Use of JAXB allows clients to use JAXB objects generated femmXML Schema to cre-
ate and manipulate XML representations and to use thesetshjgth JAX-WS without requiring
an intermediate XML serialization. JAXB objects may be usegth any protocol binding in either
message or message payload mode. When used with the HTTiRgo{sde chaptdr11) in payload
mode, the HTTP request and response entity bodies mustircofitél directly or a MIME wrap-
per with an XML root part. When used in mssage mode, if the agsss not an XML message a
WebSer vi ceExcepti on MUST be thrown.

j avax. xnl . soap. SOAPMessage Use ofSOAPMessage objects allows clients to work with SOAP mes-
sages using the convenience features provided by d&va. xm . soap package. SOAPMessage
objects may only be used withi spat ch instances that use the SOAP binding (see chdpler 10) in
message mode.

j avax. acti vati on. Dat aSour ce Use ofDat aSour ce objects allows clients to work with MIME-typed
messages.Dat aSour ce objects may only be used withi spat ch instances that use the HTTP
binding (see chapt&€rlll) in message mode.

4.3.1 Configuration

Di spat ch instances are obtained using thesat eDi spat ch factory methods of &er vi ce instance. The
nmode parameter ofr eat eDi spat ch controls whether the neld spat ch instance is message or message
payload oriented. Theype parameter controls the type of object used for messages ssage payloads.
Di spat ch instances are not thread safe.

Di spat ch instances are not required to be dynamically configurabtedifferent protocol bindings; the
WSDL binding from which thebi spat ch instance is generated contains static information inolgidhe
protocol binding and service endpoint address. However,spat ch instance may support configuration
of certain aspects of its operation and provides methotie(ired fromBi ndi ngPr ovi der) to dynamically
query and change the values of properties in its requestemmbnse contexts — see secfion 4.2.1.1 for a list
of standard properties.

April 19, 2006 JAX-WS 2.0 57

Chapter 4. Client APIs

4.3.2 Operation Invocation

A Di spat ch instance supports three invocation modes:
Synchronous request responsé (ivoke methods) The method blocks until the remote operation com-
pletes and the results are returned.

Asynchronous request responsé fivokeAsync methods) The method returns immediately, any results
are provided either through a callback or via a polling ohjec

One-way [nvokeOneWay methods) The method is logically non-blocking, subject to the calikids of

the underlying protocol, no results are returned.

Callingi nvoke on the differenDi spat ch types defined above withraul I value means an empty message
will be sent where allowed by the binding, message mode antM&P. So for example when using -

e SOAP 1.1/HTTP binding in payload mode usimg | will send a soap message with an empty body.

» SOAP 1.1 /HTTP binding in message madé | being passed tonvoke is an error condition and
will result in awebSer vi ceExcept i on.

e XML / HTTP binding both in payload and in message maodé | being passed tonvoke with the
HTTP POST and PUT operations is an error condition and wsllitedn awebSer vi ceExcept i on.

{ Conformance (Failedi spat ch. i nvoke): When an operation is invoked using iamvoke method, an
implementation MUST throw &ébSer vi ceExcept i on if there is any error in the configuration of the
Di spat ch instance or &r ot ocol Except i on if an error occurs during the remote operation invocation.

< Conformance (FaileDi spat ch. i nvokeAsync): When an operation is invoked usingiamvokeAsync

method, an implementation MUST throwV&bSer vi ceExcepti on if there is any error in the conf-
iguration of theDi spat ch instance. Errors that occur during the invocation are tegowhen the client
attempts to retrieve the results of the operation.

{ Conformance (Failedi spat ch. i nvokeOneWay): When an operation is invoked using anvoke-

OneWay method, an implementation MUST throwM&bSer vi ceExcept i on if there is any error in the
configuration of theDi spat ch instance or if an error is detecteduring the remote operation invocation.

See sectiof10.4.1 for additional SOAP/HTTP requirements.
4.3.3 Asynchronous Response
Di spat ch supports two forms of asynchronous invocation:

Polling Thei nvokeAsync method returns &esponse (see below) that may be polled using the methods
inherited fromFut ur e<T> to determine when the operation has completed and to retifievresults.

1The invocation is logically non-blocking so detection ofaes during operation invocation is dependent on the ugiterl
protocol in use. For SOAP/HTTP it is possible that certainliRTevel errors may be detected.

58 JAX-WS 2.0 April 19, 2006

4.3. javax.xml.ws.Dispatch

Callback The client supplies ansyncHandl er (see below) and the runtime calls thandl eResponse
method when the results of the operation are available.i fhekeAsync method returns a wildcard
Fut ur e (Fut ur e<?>) that may be polled to determine when the operation has aiathl The object
returned fromFut ur e<?>. get () has no standard type. Client code should not attempt to least t
object to any particular type as this will result in non-pdate behavior.

In both cases, errors that occur during the invocation grerted via an exception when the client attempts
to retrieve the results of the operation.

{ Conformance (Reporting asynchronous errol&he operation invocation fails, an implementation MUST
throw aj ava. uti | . concurrent. Executi onExcepti onfrom theResponse. get method.

The cause of aBxecut i onExcept i onis the original exception raised. In the case 8kaponse instance
this can only be &ébSer vi ceExcept i on or one of its subclasses.

The following interfaces are used to obtain the results af@aration invocation:

javax. xnl . ws. Response A generic interface that is used to group the results of andation with
the response contexResponse extends ava. util. concurrent. Fut ure<T>to provide asyn-
chronous result polling capabilities.

javax. xm . ws. AsyncHandl er A generic interface that clients implement to receive nssial an asyn-
chronous callback. It defines a sindlandl eResponse method that has Response object as its
argument.

4.3.4 Using JAXB

Ser vi ce provides acr eat eDi spat ch factory method for creatin@i spat ch instances that contain an
embeddedl AXBCont ext . Thecont ext parameter contains theAXBCont ext instance that the created
Di spat ch instance will use to marshall and unmarshall messages @magegayloads.

{ Conformance (Marshalling failure)f an error occurs when using the suppli@dXBCont ext to mar-
shall arequest or unmarshall a response, an implementdtit8ir throw anebSer vi ceExcept i on whose
cause is set to the original AXBExcept i on.

4.3.5 Examples

The following examples demonstrate usébbgpat ch methods in the synchronous, asynchronous polling,
and asynchronous callback modes. For ease of reading hamdiing has been omitted.

4.3.5.1 Synchronous, Payload-Oriented

Source reqMsg = ...;

Service service = ...;

Di spat ch<Source> di sp = service. creat eDi spat ch(port Nane,
Sour ce. cl ass, PAYLQAD);

Source resMsg = disp.invoke(reghsg);

O b wWwN PR

April 19, 2006 JAX-WS 2.0 59

Chapter 4. Client APIs

4.3.5.2 Synchronous, Message-Oriented

SOAPMessage soapRequg

Service service = ...;

Di spat ch<SOAPMessage> di sp = servi ce. creat eDi spat ch(port Nang,
SOAPMessage. cl ass, MESSAGE) ;

SOAPMessage soapResMsg = di sp. i nvoke(soapRegMsg);

abr owNPE

4.3.5.3 Synchronous, Payload-Oriented With JAXB Objects

JAXBCont ext jc JAXBCont ext . newl nst ance(" pri ner. po");
Unmarshal ler u = jc.createUnmarshal l er();
PurchaseOrder po = (PurchaseOrder)u.unmarshal (
new Fi |l el nput St rearr("po.xm"));
Service service = ...;
Di spat ch<(bj ect > di sp servi ce. creat eDi spatch(portNanme, jc, PAYLQAD);
Order Confirmati on conf = (OrderConfirmation)disp.invoke(po);

~NOoO o WNE

In the above examplBur chaseOr der andOr der Confi r mat i on are interfaces pre-generated by JAXB
from the schema document ‘primer.po’.

4.3.5.4 Asynchronous, Polling, Message-Oriented

SOAPMessage soapRequg Ce

Service service = ...

Di spat ch<SOAPI\/bssage> di sp = service. createD spat ch(port Nane,
SOAPMessage. cl ass, MESSAGE) ;

Response<SOAPMessage> res = di sp. i nvokeAsync(soapReqMsQ);

while (!'res.isbDone()) {
/1 do sonething while we wait

}

SOAPMessage soapResMsg = res.get();

©Co~NOoOUTh~, WNERE

4.3.5.5 Asynchronous, Callback, Payload-Oriented

cl ass MyHandl er i nmpl enments AsyncHandl er <Sour ce> {

public voi d handl eResponse(Response<Source> res) {
Source resMsg = res.get();
/1 do something with the results

}

Source reqMsg = ...;

10 Service service = ...;

11 Dispatch<Source> disp = service. createbDi spatch(port Nane,
12 Sour ce. cl ass, PAYLQAD);

13 MyHandl er handl er = new MyHandl er () ;

14 di sp. i nvokeAsync(reqMsg, handl er);

O©CoO~NOOUTA,WNPEP

60 JAX-WS 2.0 April 19, 2006

4.4. Catalog Facility

4.4 Catalog Facility

JAX-WS mandates support for a standard catalog facilityetoded when resolving any Web service docu-
ment that is part of the description of a Web service, spedlfi WSDL and XML Schema documents.

The facility in question is the OASIS XML Catalogs 1.1 spi&gifion [28]. It defines an entity catalog that
handles the following two cases:

» Mapping an external entity’s public identifier and/or ®m identifier to a URI reference.

» Mapping the URI reference of a resource to another URI egfes.

Using the entity catalog, an application can package oneave mescription and/or schema documents in
jar files, avoiding costly remote accesses, or remap retd&tks to other, possibly local ones. Since the
catalog is an XML document, a deployer can easily alter ituib the local environment, unbeknownst to

the application code.

The catalog is assembled by taking into account all acdesssources whose nameNETA- | NF/ j ax-
-ws- cat al og. xm . Each resource MUST be a valid entity catalog according ¢oXNIL Catalogs 1.1
specification. When running on the Java SE platform, theetiircontext class loader MUST be used to
retrieve all the resources with the specified name. RadtiRIs inside a catalog file are relative to the
location of the catalog that contains them.

& Conformance (Use of the Catalogh the process of resolving a URI that points to a WSDL documen
or any document reachable from it, a JAX-WS implementatiddSW perform a URI resolution for it, as
prescribed by the XML Catalogs 1.1 specification, usingdialog defined above as its entity catalog.

In particular, every JAX-WS API argument or annotation edamnwhose semantics is that of a WSDL
location URI MUST undergo URI resolution using the catalagility described in this section.

Although defined in the client APl chapter for reasons ofeealsexposure, use of the catalog is in no way
restricted to client uses of WSDL location URIs. In partaylresolutions of URIs to WSDL and schema
documents that arise during the publishing of the contractah endpoint (seE5.2.5) are subject to the
requirements in this section, resulting in catalog-basBd fdsolutions.

April 19, 2006 JAX-WS 2.0 61

Chapter 4. Client APIs

62

JAX-WS 2.0

April 19, 2006

Chapter 5

Service APIs

This chapter describes requirements on JAX-WS serviceemehtations and standard APIs provided for
their use.

5.1 javax.xml.ws.Provider

JAX-WS services typically implement a native Java servitgpeint interface (SEI), perhaps mapped from
a WSDL port type, either directly or via the use of annotatioBectiori-3]4 describes the requirements that
a Java interface must meet to qualify as a JAX-WS SEI. SeBlidrlescribes the mapping from a WSDL
port type to an equivalent Java SEI.

Java SEls provide a high level Java-centric abstractiohhitkes the details of converting between Java
objects and their XML representations for use in XML-baseessages. However, in some cases it is
desirable for services to be able to operate at the XML meskagl. ThePr ovi der interface offers an
alternative to SEls and may be implemented by services mgsiai work at the XML message level.

{» Conformance (Provider support requiredn implementation MUST suppoRr ovi der <Sour ce> in
payload mode with all the predefined bindings. It MUST alsgort Pr ovi der <SOAPMessage> in
message mode in conjunction with the predefined SOAP bisdamdPr ovi der <j avax. acti vati on-
. Dat aSour ce> in message mode in conjunction with the predefined HTTPRibgd

< Conformance (Provider default constructoA:Pr ovi der based service endpoint implementation MUST
provide a public default constructor.

A typed Pr ovi der interface is one in which the type parameter has been bouadctmcrete class, e.g.
Provi der <Sour ce> or Pr ovi der <SOAPMessage>, as opposed to being left unbound, aBimvi der <T>.

& Conformance (Provider implementatior): Pr ovi der based service endpoint implementation MUST
implement a typedbr ovi der interface.

& Conformance (WebServiceProvider annotatiof)Pr ovi der based service endpoint implementation
MUST carry avebSer vi cePr ovi der annotation (seE_4.7).

Provi der is a low level generic API that requires services to work wisssages or message payloads and
hence requires an intimate knowledge of the desired messgogyload structure. The generic nature of
Provi der allows use with a variety of message object types.

April 19, 2006 JAX-WS 2.0 63

Chapter 5. Service APIs

5.1.1 Invocation

A Provi der based service instance'sivoke method is called for each message received for the service.

5.1.1.1 Exceptions

The service runtime is required to catch exceptions throywa Provider instance. Rrovi der instance
may make use of the protocol specific exception handlinghaeism as described in sectiobn 614.1. The
protocol binding is responsible for converting the exaapinto a protocol specific fault representation and
then invoking the handler chain and dispatching the fauksage as appropriate.

5.1.2 Configuration

The Ser vi ceMbde annotation is used to configure the messaging modeRofoai der instance. Use of
@ser vi ceMbde(val ue=MESSAGE) indicates that the provider instance wishes to receive and entire
protocol messages (e.g. a SOAP message when using the S@&RgDdi absence of the annotation or
use of@ser vi ceMbde(val ue=PAYLOAD) indicates that the provider instance wishes to receive and s
message payloads only (e.g. the contents of a SOAP Body efemen using the SOAP binding).

Provider instances MAY use thibSer vi ceCont ext facility (see[5.B) to access the message context and
other information about the request currently being served

The JAX-WS runtime makes certain properties availablePoa@vi der instance that can be used to deter-
mine its configuration. These properties are passed terthei der instance each time it is invoked using
the MessageCont ext instance accessible from thebSer vi ceCont ext .

5.1.3 Examples

For brevity, error handling is omitted in the following expl®s.

Simple echo service, reply message is the same as the input me ssage

1 @\ebServiceProvider

2 @ervi ceMbde(val ue=Servi ce. Mbde. MESSAGE)

3 public class MyService inplenents Provi der<SOAPMessage> {
4 public MyService() {

5 }
6
7 publ i c SOAPMessage i nvoke(SOAPMessage request) {
8 return request;
9 }
10 }
Simple static reply, reply message contains a fixed acknowl egment element
1 @\ebServiceProvider
2 @pervi ceMbde(val ue=Servi ce. Mbde. PAYLOAD)
3 public class MyService inplenents Provider<Source> {
4 public MyService() {

64 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

5 }

6

7 public Source invoke(Source request) {

8 Sour ce request Payl oad = request. get Payl oad();

9 C.

10 String replyElenent = "<n:ack xmns:n="..."/>";

11 StreanSource reply = new StreanSource(new StringReader (repl yEl emrent));
12 return reply;

13 }

14 }

Using JAXB to read the input message and set the reply

1 @\ébServiceProvider

2 @pervi ceMbde(val ue=Servi ce. Mbde. PAYLOAD)

3 public class MyService inplenents Provider<Source> {

4 public MyService() {

5 }

6

7 public Source invoke(Source request) {

8 JAXBCont ent jc = JAXBCont ext.new nstance(...);
9 Unmarshal ler u = jc.createUnmarshal l er();

10 bj ect request Gbj = u.unmarshall (request);

12 Acknowl edgenent reply = new Acknow edgenent (...);
13 return new JAXBSource(jc, reply);

14 }

15 }

5.2 javax.xml.ws.Endpoint

TheEndpoi nt class can be used to create and publish Web service endpoints

An endpoint consists of an object that acts as the Web seivipkementation (called herienplementoy
plus some configuration information, e.g.Bandi ng. Implementor and binding are set when the end-
point is created and cannot be modified later. Their val@sle retrieved using thget | npl enent or
andget Bi ndi ng methods respectively. Other configuration informationyrba set at any time after the
creation of arEndpoi nt but before its publication.

5.2.1 Endpoint Usage
Endpoints can be created using the following static metlooddpoi nt :

creat e(Obj ect inplenmentor) Creates and returns &ndpoi nt for the specified implementor. If the
implementor specifies a binding using thevax. xm . ws. Bi ndi ngType annotation it MUST be
used else a default binding of SOAP 1.1 / HTTP binding MUST &edu

create(String bindingl D, Ooject inplenentor) Createsand returns &ndpoi nt for the specif-
ied binding and implementor. If the bindingID msul | and no binding information is specified via
thej avax. xnl . ws. Bi ndi ngType annotation then a default SOAP 1.1 / HTTP binding MUST be
used.

April 19, 2006 JAX-WS 2.0 65

Chapter 5. Service APIs

publish(String address, Object inplenentor) Createsand publishesBndpoi nt for the given
implementor. The binding is chosen by default based on the EdReme of the provided address
(which must be a URL). If a suitable binding if found, the eaity is created then published as if the
Endpoi nt. publ i sh(String address) method had been called. The creaidipoi nt is then
returned as the value of the method.

These methods MUST delegate the creation of Endpoint tpdkeax. xm . ws. spi . Provi der SPI class
(sed&.R) by calling ther eat eEndpoi nt andcr eat eAndPubl i shEndpoi nt methods respectively.

An implementor object MUST be either an instance of a classtated with the@ebSer vi ce annotation
according to the rules in chapter 3 or an instance of a clagstated with thenebSer vi cePr ovi der
annotation and implementing tife ovi der interface (seE&l1).

Thepubl i sh(String, Obj ect) method is provided as a shortcut for the common operatiomeafting
and publishing aEndpoi nt . The following code provides an example of its use:

1 // assune Test is an endpoint inplenentation class annotated with @ebService
2 Test test = new Test();
3 Endpoint e = Endpoint.publish("http://1ocal host:8080/test", test);

{ Conformance (Endpoint publish(String address, Objectéempntor) Method).The effect of invoking the
publ i sh method on aEndpoi nt MUST be the same as first invoking theeat e method with the binding
ID appropriate to the URL scheme used by the address, thekimy thepubl i sh(String address)
method on the resultingndpoi nt .

{ Conformance (Default Endpoint Binding)n the absence of a specified binding, if the URL scheme
for the address argument of tRadpoi nt . publ i sh method is "http” or "https” then an implementation
MUST use the SOAP 1.1/HTTP binding (see chapiér 10) as thirfgrfor the newly created endpoint.

{ Conformance (Other Bindings)An implementation MAY support using th&ndpoi nt . publ i sh method
with addresses whose URL scheme is neither "http” nor "https

The success of thendpoi nt . publ i sh method is conditional to the presence of the appropriateigsion
as described in sectign 5.2.3.

Endpoint implementors MAY use thibSer vi ceCont ext facility (sed5.B) to access the message context
and other information about the request currently beingeskrinjection of therébSer vi ceCont ext , if
requested, MUST happen the first time the endpoint is plkds After any injections have been performed
and before any requests are dispatched to the implemeamamplementor method which carriep avax-

. annot at i on. Post Const r uct annotation, if present, MUST be invoked. Such a method MUS&iBfy

the requirements for lifecycle methods in JSR-250 [29].

5.2.2 Publishing

An Endpoi nt is in one of three states: not published (the default), gtiklil or stopped. Published end-
points are active and capable of receiving incoming reguastl dispatching them to their implementor.
Non published endpoints are inactive. Stopped endpoirg vnethe published until some time ago, then got
stopped. Stopped endpoints cannot be published againic&tidoh of anEndpoi nt can be achieved by
invoking one of the following methods:

publ i sh(String address) Publishes the endpoint at the specified address (a URL)adtieess MUST
use a URL scheme compatible with the endpoint’s binding.

66 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

publ i sh(Obj ect server Cont ext) Publishes the endpoint using the specified server contdxte
server context MUST contain address information for theltegy endpoint and it MUST be compat-
ible with the endpoint’s binding.

{> Conformance (Publishing over HTTP the Bi ndi ng for anEndpoi nt is a SOAP (seE10) or HTTP
(sedl) binding, then an implementation MUST support phbig theEndpoi nt to a URL whose scheme
is either "http” or "https”.

The WSDL contract for an endpoint is created dynamicallyedasn the annotations on the implementor
class, thesi ndi ng in use and the set of metadata documents specified on theieh@ged 5.214).

{» Conformance (WSDL Publishing)An Endpoi nt that uses the SOAP 1.1/HTTP binding (E€k 10) MUST
make its contract available as a WSDL 1.1 document at thagtud address suffixed with "?WSDL” or
"?wsdl”.

An Endpoi nt that uses any other binding defined in this specificatioodnjunction with the HTTP trans-
port SHOULD make its contract available using the same ctime. It is RECOMMENDED that an
implementation provide a way to access the contract for dp@nt even when the latter is published over
a transport other than HTTP.

The success of the twendpoi nt . publ i sh methods described above is conditional to the presenceof th
appropriate permission as described in sedfions.2.3.

Applications that wish to modify the configuration infortitan (e.g. the metadata) for &mdpoi nt must
make sure the latter is in the not-published state. Althdhghvarious setter methods &ndpoi nt must
always store their arguments so that they can be retrievedidigr invocation of a getter, the changes they
entail may not be reflected on the endpoint until the next iirmsepublished. In other words, the effects of
configuration changes on a currently published endpomuadefined.

The st op method can be used to stop publishing an endpoint. A stoppdgbént may not be restarted. It
is an error to invoke aubl i sh method on a stopped endpoint. After #teop method returns, the runtime
MUST NOT dispatch any further invocations to the endpoimtiplementor.

An Endpoi nt will be typically invoked to serve concurrent requests,tsamplementor should be written
S0 as to support multiple threads. Thenchr oni zed keyword may be used as usual to control access to
critical sections of code. For finer control over the thieaded to dispatch incoming requests, an application
can directly set the executor to be used, as described iwsSECP.T.

5.2.2.1 Example

The following example shows the use of fhbl i sh(Obj ect) method using a hypothetical HTTP server
API that includes thett t pSer ver andHt t pCont ext classes.

/1 assume Test is an endpoint inplementation class annotated with @WbService
Test test = new Test();

Ht t pServer server = HttpServer.create(new | net Socket Addr ess(8080), 10);

server. set Execut or (Execut or. newri xedThr eadPool (10));

server.start();

Ht t pCont ext context = server.createContext("/test");

Endpoi nt endpoi nt = Endpoi nt. cr eat e(SCAPBi ndi ng. SOAP11HTTP_BI NDI NG test);
endpoi nt. publ i sh(context);

O~NOOUOT R WN P

Note that the specified server context uses its own exeoutohanism. At runtime then, any other executor
set on theendpoi nt instance would be ignored by the JAX-WS implementation.

April 19, 2006 JAX-WS 2.0 67

Chapter 5. Service APIs

5.2.3 Publishing Permission

For security reasons, administrators may want to restnietability of applications to publish Web ser-
vice endpoints. To this end, JAX-WS 2.0 defines a new peinnisslassj avax. xm . ws. WebSer vi ce-
Per mi ssi on, and one named permissigrybl i shEndpoi nt .

{ Conformance (Checkingubl i shEndpoi nt Permission):When any of thepubl i sh methods defined
by the Endpoi nt class are invoked, an implementation MUST check whethg8ecur i t yManager is
installed with the application. If it is, implementationsUBT verify that the application has tha&b-
Ser vi cePer m ssi on identified by the target namgubl i shEndpoi nt before proceeding. If the per-
mission is not granted, implementations MUST NOT publigheéhdpoint and they MUST throwjava-

.l ang. SecurityException.

5.2.4 Endpoint Metadata

A set of metadata documents can be associated witBnaipoi nt by means of theset Met adat a-

(Li st <Sour ce>) method. By setting the metadata of Bmdpoi nt , an application can bypass the auto-
matic generation of the endpoint’'s contract and specifyddsred contract directly. This way it is possible,
e.g., to make sure that the WSDL or XML Schema document thatilidished contains information that
cannot be represented using built-in Java annotation$fjsee

< Conformance (Required Metadata Type&)1 implementation MUST support WSDL 1.1 and XML Schema
1.0 documents as metadata.

& Conformance (Unknown Metadatahn implementation MUST ignore metadata documents whose typ
it does not recognize.

When specifying a list of documents as metadata, an apiplicatay need to establish references between
them. For instance, a WSDL document may import one or more >8dhema documents. In order to do
so, the application MUST use thlyst em d property of theg avax. xnl . t r ansf or m Sour ce class by
setting its value to an absolute URI that uniquely idendifteamong all supplied metadata documents, then
using the given URI in the appropriate construct (@l : i nport or xsd: i mport).

5.2.5 Determining the Contract for an Endpoint

This section details how the annotations on the endpointementation class and the metadata for an
endpoint instance are used at publishing time to create taamriior the endpoint.

Both thewebSer vi ce andWebSer vi cePr ovi der annotations define asdl Locat i on annotation ele-
ment which can be used to point to the desired WSDL documerthéendpoint. If such an annotation
element is present on the endpoint implementation classhaad value other than the default one (i.e.
it is not the empty string), then a JAX-WS implementation MU$e the document referred to from the
wsdl Locat i on annotation element to determine the contract, accorditigetoules in section’5.2.8.3.

In addition to the case in which tiendpoi nt API is explicitly used, the requirements in this section are
also applicable to the publishing of an endpoint via detillaneans, e.g. in a servlet container. In this

case, there may not be an equivalent for the notion of metadatlescribed [1’5.2.4. In such an occurrence,
the rules in this section MUST be applied using an empty setaihdata documents as the metadata for the
endpoint.

68 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

In the context of the Java EE Platform, JSR-109 [14] defiregayment descriptor elements that may be
used to override the value of thedl Locat i on annotation element. Please refer to that specification for
more details.

As we specify additional rules to be used in determining thetract for an endpoint, we distinguish two
cases: that of a SEl-based endpoint (i.e. an endpoint thaigtated with &ébSer vi ce annotation) and
that of a Provider-based endpoint.

5.2.5.1 SEl-based Endpoints

For publishing to succeed, a SEl-based endpoint MUST haassociated contract.

If the wsdl Locat i on annotation element is the empty string, then a JAX-WS implatattion must obey
the following rules, depending on the binding used by thepeid:

SOAP 1.1/HTTP Binding A JAX-WS implementation MUST generate a WSDL descriptiontfee end-
point based on the rules in section 5.2.5.3 below.

SOAP 1.2/HTTP Binding A JAX-WS implementation MUST NOT generate a WSDL descriptior the
endpoint.

HTTP Binding A JAX-WS implementation MUST NOT generate a WSDL descriptior the endpoint.

Any Implementation-Specific Binding A JAX-WS implementation MAY generate a WSDL description
for the endpoint.

Note: This requirements guarantee that future versions of thixijgation may mandate support for ad-
ditional WSDL binding in conjunction with the predefineading identifiers without negatively affecting
existing applications.

A generated contract MUST follow the rules in chajfler 3 amdé¢hin the JAXB specification [10].

5.2.5.2 Provider-based Endpoints

Provider-based endpoints SHOULD have a non-emagtyl Locat i on pointing to a valid WSDL descrip-
tion of the endpoint.

If thewsdl Locat i on annotation element is the empty string, then a JAX-WS impletation MUST NOT
generate a WSDL description for the endpoint.

5.2.5.3 Use of @¢bServi ce(wsdl Locati on) and Metadata

A WSDL document contains two different kinds of informaticsbstract information (i.e. portTypes and
any schema-related information) which affects the fornidhe messages and the data being exchanged,
and binding-related one (i.e. bindings and ports) whicbaff the choice of protocol and transport as well as
the on-the-wire format of the messages. Annotations[{seee7provided to capture the former aspects but
not the latter. (The@BOAPBI ndi ng annotation is a bit of a hybrid, because it captures the tigaaelated
aspects of theoap: bi ndi ng binding extension in WSDL 1.1.)

At runtime, annotations must be followed for all the abdtespects of an interaction, but binding informa-
tion has to come from somewhere else. Although the choicéndiifig is made at the time an endpoint is

April 19, 2006 JAX-WS 2.0 69

Chapter 5. Service APIs

created, this specification does not attempt to capturpassible binding properties in its APIs, since the
extensibility of WSDL would make it a futile exercise. Rathehen an endpoint is published, a description
for it, if present, is consulted to determine binding infation, using thewsdl : ser vi ce andwsdl : port
qualified names as a key.

In terms of priority, the description specified using thedl Locat i on annotation element, if present,
comes first, and the metadata documents are secondarg dbslence of a non-empty, non-defasltll Locat i on
annotation element, the metadata documents are consaltddritify as many description components as
possible that can be reused when producing the contradidagridpoint.

There are some restrictions on the packaging of the deiseriphd any associated metadata documents.
The goal of these restrictions is to make it possible to ghbin endpoint without forcing a JAX-WS
implementation to retrieve, store and patch multiple doenits from potentially remote sites.

The value of thensdl Locat i on annotation element on an endpoint implementation class)yif MUST
be a relative URL. The document it points to MUST be packagitk tlve application. Moreover, it MUST
follow the requirements in secti@n 5.2.5.4 below ("Apptioa-specified Service”).

In the Java SE platform, relative URLSs are treated as ressukhen running on the Java EE platform, the
dispositions in the JSR-109 specification apply.

For ease of identification, let’'s call this document thedtrdescription document”, to distinguish it from
any WSDL documents it might import.

At publishing time, a JAX-WS implementation MUST patch thedpoint address in the root description
document to match the actual address the endpoint is depliye

In order to state the requirements for patching the locatminanywsdl : i nport -ed orxsd: i nport -ed
documents, let's define a document as bdowal if and only if

1. itis the root description document, or

2. itis reachable from a local document via an import statemdnose location is either a relative URL
or an absolute URL for which there is a corresponding metadatument (i.e. &our ce object
which is a member of the list of metadata documents and wégseerni d property is equal to the
URL in question).

A JAX-WS implementation MUST patch the location attributisall wsdl : i nport andxsd: i mport
statement in local documents that point to local documeats.implementation MUST NOT patch any
other location attributes.

Please note that, although the catalog facility (Se¢ 4.4)sexd to resolve any absolute URLsS encoun-
tered while processing the root description document ordmouments transitively reachable from it via
wsdl ;i mport andxsd: i mport statements, those absolute URLs will not be rewritten whenrporting
document is published, since documents resolved via tiadogadre not considered local, even if the catalog
maps them to resources packaged with the application.

In what follows, for better readability, the term "metaddtacument” should be interpreted as also covering
the description document pointed to by tledl Locat i on annotation element (if any), while keeping in
mind the processing rules in the preceding paragraphs.

As a guideline, the generated contract must reuse as muatsaible the set of metadata documents pro-
vided by the application. In order to simplify an implemeargdask, this specification requires that only a
small number of well-defined scenarios in which the appiliceprovides metadata documents be supported.

70 JAX-WS 2.0 April 19, 2006

5.2. javax.xml.ws.Endpoint

Implementations MAY support other use cases, but they MUidw the general rule that any application-
provided metadata element takes priority over an impleatiem-generated one, with the exception of the
overriding of a port address.

For instance, if the application-provided metadata costa definition for portTypdoo that in no case
should the JAX-WS implementation create its dien portType to replace the one provided by the applica-
tion in the final contract for the endpoint.

The exception to using a metadata document as supplied gpgiecation without any modifications is
the address of thesdl : port for the endpoint, which MUST be overridden so as to match tidress
specified as an argument to thebl i sh method or the one implicit in a server context.

When publishing the main WSDL document for an endpoint, gelémentation MUST ensure that all refer-
ences between documents are correct and resolvable. Thieemzire remapping the metadata documents
to URLs different from those set as theiyst em d property. The renaming MUST be consistent, in that the
"imports” and "includes” relationships existing betweercdments when the metadata was supplied to the
endpoint MUST be respected at publishing time. Moreover,slime metadata document SHOULD NOT
be published at multiple, different URLs.

When resolving URI references to other documents when psing metadata documents or any of the
documents they may transitively reference, a JAX-WS imgletation MUST use the catalog facility def-
ined in sectiol4]4, except when there is a metadata docusarse system id matches the URI in question.
In other words, metadata documents have priority over @gthsed mappings.

The scenarios which are required to be supported are troeviol):

5.2.5.4 Application-specified Service

One of the metadata documents, gaycontains a definition for a WSDL service whose qualifieanea

, say S, matches that specified by the endpoint being publishedhithcase, a JAX-WS implementation
MUST useD as the service description. No further generation of cottelated artifacts may occur.
The implementation MUST also override the port addred3 and thel ocat i on andschenmaLocat i on
attributes as detailed in the preceding paragraphs. Itésranif more than one metadata document contains
a definition for the sought-after servi&

5.2.5.5 Application-specified PortType

No metadata document contains a definition for the soufibt-aerviceS, but a metadata document, say
D, contains a definition for the WSDL portType whose quatifitame, say, matches that specified by the
endpoint being published. In this case, a JAX-WS implentemtaMUST create a new description &
including an appropriate WSDL binding element referenging TypeP. The metadata documeDtMUST

be imported/included so that the published contract usedédfinition ofP provided byD. No schema gen-
eration occurs,aR is assumed to embed or import schema definitions for alltpesd/elements it requires.
Like in the previous case, the implementation MUST overadg| ocat i on andschenalLocat i on at-
tributes. Itis an error if more than one metadata documantbaus a definition for the sought-after portType
P.

April 19, 2006 JAX-WS 2.0 71

Chapter 5. Service APIs

Table 5.1: StandarBndpoi nt properties.

Name Type Description

j avax. xm . ws. wsdl

. service QName Specifies the qualified name of the service.
. port QName Specifies the qualified name of the port.

5.2.5.6 Application-specified Schema or No Metadata

No metadata document contains a definition for the soufjat-aerviceS and portTypeP. In this case, a
JAX-WS implementation MUST generate a complete WSDLSoYWhen it comes to generating a schema
for a certain target namespace, 3aythe implementation MUST reuse the schemaTfamong the avail-
able metadata documents, if any. Like in the preceding dasejmplementation MUST override any
schemalLocat i on attributes. It is an error if more than one schema documepesified as metadata
for the endpoint attempt to define components in a namespased by the endpoint.

Note: The three scenarios described above cover several applicase cases. The first one represents an
application that has full control over all aspects of the tant. The JAX-WS runtime just uses what the
application provided, with a minimum of adjustments to em&wnsistency. The second one corresponds
to an application that defines all abstract aspects of the W3[PB. portType(s) and schema(s), leaving
up to the JAX-WS runtime to generate the concrete portiotieotontract. Finally, the third case rep-
resents an application that uses one or more well-knownmeli®), possibly taking advantage of lots of
facets/constraints that JAXB cannot capture, and wanteuse it as-is, leaving all the WSDL-specific as-
pects of the contract up to the runtime. This use case alsers@n application that does not specify any
metadata, leaving WSDL and schema generation up to the JBXavw JAXB) implementation.

5.2.6 Endpoint Properties

An Endpoi nt has an associated set of properties that may be read anenauging theyet Properti es
andset Pr oper ti es methods respectively.

Table[5.1 lists the set of standaEddpoi nt properties.

When present, the WSDL-related properties override theegaspecified using th&bSer vi ce andwWeb-
Ser vi ceProvi der annotations. This functionality is most useful with prasficbbjects (see section¥.7),
since the latter are naturally more suited to a more dynas#gel For instance, an application that publishes
a provider endpoint can decide at runtime which web senacenpersonate by using a combination of
metadata documents and the properties described in thisrsec

5.2.7 Executor

Endpoi nt instances can be configured withj ava. util. concurrent. Execut or. The executor will
then be used to dispatch any incoming requests to the apiplical heset Execut or andget Execut or
methods oEndpoi nt can be used to modify and retrieve the executor configured ervice.

& Conformance (Use of Executor)f an executor object is successfully set onEtpoi nt via theset -
Execut or method, then an implementation MUST use it to dispatch irngmequests upon publication of
the Endpoi nt by means of thepubl i sh(String address) method. If publishing is carried out using
thepubl i sh(Obj ect server Cont ext)) method, an implementation MAY use the specified executor 0
another one specific to the server context being used.

72 JAX-WS 2.0 April 19, 2006

5.3. javax.xml.ws.WebServiceContext

{ Conformance (Default Executor)f an executor has not been set onErdpoi nt, an implementation
MUST use its own executor, jaava. uti | . concurrent. Thr eadPool Execut or or analogous mecha-
nism, to dispatch incoming requests.

5.3 javax.xml.ws.WebServiceContext

Thej avax. xnl . ws. WebSer vi ceCont ext interface makes it possible for an endpoint implementation
object and potentially any other objects that share itsui@t context to access information pertaining to
the request being served.

The result of invoking any methods on tiébSer vi ceCont ext of a component outside the invocation
of one of its web service methods is undefined. An implem@antaSHOULD throw aj ava. | ang-
.I'l'l egal St at eExcepti onif it detects such a usage.

The WebSer vi ceCont ext is treated as an injectable resource that can be set at teeatirendpoint is
initialized. TheWebSer vi ceCont ext object will then use thread-local information to return ttearect
information regardless of how many threads are concugrdrgting used to serve requests addressed to the
same endpoint object.

In Java SE, the resource injection denoted byWieSer vi ceCont ext annotation is REQUIRED to take
place only when the annotated class is an endpoint implextientclass.

The following code shows a simple endpoint implementati@ss which requests the injection of its
WebSer vi ceCont ext :

@\bSer vi ce
public class Test {
@Resour ce
private WebServi ceCont ext context;

public String reverse(String inputString) { ... }

~No o~ WN R

Thej avax. annot at i on. Resour ce annotation defined by JSR-250 [29] is used to request iojeaf
the WebSer vi ceCont ext . The following constraints apply to the annotation eleraesftaResour ce
annotation used to inject\&bSer vi ceCont ext :

* Thetype element MUST be eitherava. | ang. Obj ect (the default) orj avax. xm . ws. Web-
Ser vi ceCont ext . If the former, then the resource MUST be injected into adfied a method. In
this case, the type of the field or the type of the JavaBeamsepty defined by the method MUST be
javax. xm . ws. WebSer vi ceCont ext .

» Theaut henti cati onType, shar eabl e elements, if they appear, MUST have their respective de-
fault values.

The above restriction onype guarantees that a resource typa\ebSer vi ceCont ext is either explicitly
stated or can be inferred from the annotated field/methathd®ion. Moreover, the field/method type must
be assignable from the type described by the annotatignpe element.

When running on the Java SE platform, treare andmappedNane elements are ignored. As a consequence,
on Java SE there is no point in declaring a resource of WylsSer vi ceCont ext on the endpoint class
itself (instead of one of its fields/methods), since it widye accessible at runtime via JNDI.

April 19, 2006 JAX-WS 2.0 73

Chapter 5. Service APIs

When running on the Java EE 5 platform, resources of WgieSer vi ceCont ext are treated just like all
other injectable resources there and are subject to theraons prescribed by the platform specification
[30].

Note: When using method-based injection, it is recommended likatnethod be declared as non-public,
otherwise it will be exposed as a web service operation.ridtévely, the method can be marked with the
@\ebMet hod(excl ude=t r ue) annotation to ensure it will not be part of the generated pgpe for the
service.

5.3.1 MessageContext

The message context made available to endpoint instarediseviébSer vi ceCont ext acts as a restricted
window on to theMessageCont ext of the inbound message following handler execution (septehi@).
The restrictions are as follows:

» Only properties whose scopeAPPLI CATI ON are visible using &essageCont ext obtained from
aWebSer vi ceCont ext ; theget method returnsul | for properties wittHANDLER scope, theset
returned bykeySet only includes properties witAPPLI CATI ON scope.

* New properties set in the context are set in the underlyiagsageCont ext with APPLI CATI ON
scope.

» An attempt to set the value of property whose scoptANDLER in the underlyingvessageCont ext
results in an | | egal Ar gunent Except i on being thrown.

» Only properties whose scopeASPLI CATI ON can be removed using the context. An attempt to re-
move a property whose scope4sNDLERIN the underlyingvessageCont ext resultsinan | | egal -
Ar gunent Except i on being thrown.

» TheMap. put Al | method can be used to insert multiple properties at onceh paperty is inserted
individually, each insert operation being carried out amiflosed by a try/catch block that traps any
Il | egal Argunent Excepti on. Consequentlyput Al | is not atomic: it silently ignores properties
whose scope iBANDLER and it never throws ahl | egal Ar gunment Except i on.

The MessageCont ext is used to store handlers information between request apmbmee phases of a
message exchange pattern, restricting access to contgdrpes in this way ensures that endpoint imple-
mentations can only access properties intended for their us

74 JAX-WS 2.0 April 19, 2006

Chapter 6

Core APIs

This chapter describes the standard core APIs that may libydsoth client and server side applications.

6.1 javax.xml.ws.Binding

Thej avax. xm . ws. Bi ndi ng interface acts as a base interface for JAX-WS protocol bggli Bindings
to specific protocols extendi ndi ng and may add methods to configure specific aspects of thabqub
binding’s operation. Chapt€rl0 describes the JAX-WS SOiBiihg; chaptef1l1 describes the JAX-WS
XML/HTTP binding.

Applications obtain @i ndi ng instance from @i ndi ngPr ovi der (a proxy orDi spat ch instance) or
from anEndpoi nt using theget Bi ndi ng method (see sectiois ¥[Z.15.2).

A concrete binding is identified by kinding id i.e. a URI. This specification defines a number of stan-
dard bindings and their corresponding identifiers (se@EaID anf11). Implementations MAY support
additional bindings. In order to minimize conflicts, therdéer for an implementation-specific binding
SHOULD use a URI scheme that includes a domain name or equiyal.g. the "http” URI scheme. Such
identifiers SHOULD include a domain name controlled by timplementation’s vendor.

Bi ndi ng provides methods to manipulate the handler chain confibarean instance (see sectlon 92.1).

& Conformance (Read-only handler chaingh implementation MAY prevent changes to handler chains
configured by some other means (e.g. via a deployment gésQrby throwingunsuppor t edQper at i on-
Except i on from theset Handl er Chai n method of8i ndi ng

6.2 javax.xml.ws.spi.Provider

Provi der is an abstract service provider interface (SPI) factorgstaat provides various methods for the
creation ofEndpoi nt instances an@er vi ceDel egat e instances. These methods are designed for use by
other JAX-WS API classes, such &sr vi ce (sed4l]l) an&ndpoi nt (sed5.R) and are not intended to be
called directly by applications.

TheProvi der SPI allows an application to use a different JAX-WS impletatan from the one bundled
with the platform without any code changes.

¢ Conformance (Concrejeavax. xm . ws. spi . Provi der required): Animplementation MUST provide

April 19, 2006 JAX-WS 2.0 75

Chapter 6. Core APIs

a concrete class that exterjdsvax. xm . ws. spi . Provi der . Such a class MUST have a public construc-
tor which takes no arguments.

6.2.1 Configuration

TheProvi der implementation class is determined using the followingpatgm. The steps listed below
are performed in sequence. At each step, at most one camdiggiementation class name will be produced.
The implementation will then attempt to load the class wlith given class name using the current context
class loader or, missing one, theva. | ang. d ass. f or Name(St ri ng) method. As soon as a step results
in an implementation class being successfully loaded, If@ithm terminates.

1. If aresource with the name BETA- | NF/ ser vi ces/ j avax. xml . ws. spi . Provi der exists, then
its first line, if present, is used as the UTF-8 encoded nahtieedimplementation class.

2. Ifthe${j ava. hone}/ | i b/ j axws. proper ti es file exists and it is readable by thava. util -
. Properties. | oad(Input Stream) method and it contains an entry whose key avax. xni -
. Ws. spi . Provi der, then the value of that entry is used as the name of the impittien class.

3. If a system property with the namavax. xni . ws. spi . Pr ovi der is defined, then its value is used
as the name of the implementation class.

4. Finally, a default implementation class name is used.

6.2.2 Creating Endpoint Objects

Endpoints can be created using the following methodBravi der :

creat eEndpoi nt (String bi ndi ngl D, Object inplenmentor) Creates and returns @mdpoi nt
for the specified binding and implementor.

cr eat eAndPubl i shEndpoi nt (String address, Object inplenentor) Createsand publishes an
Endpoi nt for the given implementor. The binding is chosen by defaakda on the URL scheme
of the provided address (which must be a URL). If a suitabieliibig if found, the endpoint is cre-
ated then published as if tiEadpoi nt . publ i sh(Stri ng addr ess) method had been called. The
createdEndpoi nt is then returned as the value of the method.

An implementor object MUST be either:

* an instance of a SEl-based endpoint class, i.e. a classaedavith the@ebSer vi ce annotation
according to the rules in chapfdr 3, or

 an instance of a provider class, i.e. a class implementiagrtovi der interface and annotated with
theWebSer vi cePr ovi der annotation according to the rulesinls.1.

Thecr eat eAndPubl i shEndpoi nt (Stri ng, Obj ect) method is provided as a shortcut for the common
operation of creating and publishing &ndpoi nt . It corresponds to the statpubl i sh method defined
on theEndpoi nt class, seE5.2.1.

{ Conformance (Provider createAndPublishEndpoint Methddlle effect of invoking thecr eat eAnd-
Publ i shEndpoi nt method on &r ovi der MUST be the same as first invoking tlee eat eEndpoi nt
method with the binding ID appropriate to the URL scheme Udtie address, then invoking thebl i sh-
(String address) method on the resultingndpoi nt .

76 JAX-WS 2.0 April 19, 2006

6.3. javax.xml.ws.spi.ServiceDelegate

6.2.3 Creating ServiceDelegate Objects
javax. xm . ws. spi . Servi ceDel egat e[6.3 can be created using the following methodPonvi der :

creat eServi ceDel egat e(URL wsdl Docunment Locati on, QName servi ceNane, C ass serviceC ass)
Creates and returnsSer vi ceDel egat e for the specified service. When starting from WSDL the
serviceClass will be the generated service class as dedarilsectiol 2]7. In the dynamic case where
there is no service class generated it willjlzevax. xm . ws. Ser vi ce. The serviceClass is used by
theSer vi ceDel egat e to get access to the annotations.

6.3 javax.xml.ws.spi.ServiceDelegate

Thej avax. xnl . ws. spi . Ser vi ceDel egat e class is an abstract class that implementations MUST pro-
vide. This is the class thatavax. xml . ws. Ser vi ce B class delegates all methods, except the static
cr eat e methods to. ServiceDelegate is defined as an abstractfolafsgure extensibility purpose.

{ Conformance (Concrejeavax. xml . ws. spi . Ser vi ceDel egat e required): Animplementation MUST
provide a concrete class that extenpdsax. xm . ws. spi . Servi ceDel egat e.

6.4 Exceptions
The following standard exceptions are defined by JAX-WS.

javax. xml . ws. WebSer vi ceExcepti on A runtime exception that is thrown by methods in JAX-WS
APIs when errors occur during local processing.

javax. xml . ws. Prot ocol Excepti on A base class for exceptions related to a specific protocalibg.
Subclasses are used to communicate protocol level faoktnEtion to clients and may be used by a
service implementation to control the protocol specifiglfaepresentation.

javax. xml . ws. soap. SOAPFaul t Except i on A subclass ofPr ot ocol Excepti on, may be used to
carry SOAP specific information.

javax. xm . ws. htt p. HTTPExcept i on Asubclass ofr ot ocol Except i on, may be used to carry HTTP
specific information.

Editors Note 6.1 A future version of this specification may introduce a newegkion class to distinguish
errors due to client misconfiguration or inappropriate jpaneters being passed to an API from errors that
were generated locally on the sender node as part of the atiarc process (e.g. a broken connection or
an unresolvable server name). Currently, both kinds ofrereme mapped to WebServiceException, but the
latter kind would be more usefully mapped to its own excepiipe, much like ProtocolException is.

6.4.1 Protocol Specific Exception Handling

& Conformance (Protocol specific fault generatiodyhen throwing an exception as the result of a pro-
tocol level fault, an implementation MUST ensure that theegtion is an instance of the appropriate
Pr ot ocol Except i on subclass. For SOAP the approprideot ocol Excepti on subclass iSSOAP-
Faul t Excepti on, for XML/HTTP is iSHTTPExcept i on.

April 19, 2006 JAX-WS 2.0 77

Chapter 6. Core APIs

{ Conformance (Protocol specific fault consumptiodyhen an implementation catches an exception thrown
by a service endpoint implementation and the cause of thaption is an instance of the appropriate

Pr ot ocol Except i on subclass for the protocol in use, an implementation MUSEcefthe information
contained in thér ot ocol Except i on subclass within the generated protocol level fault.

6.4.1.1 Client Side Example

try {
response = di spatch.invoke(request);
}

catch (SOAPFaul t Exception e) {
MNane soapFaul t Code = e. get Faul t (). get Faul t CodeAsQNane();

~No o~ WNERE

6.4.1.2 Server Side Example
public void endpoi nt Operation() {

if (someProblem {
SOQAPFaul t fault = soapBindi ng. get SOAPFact ory() . createFaul t(
faultcode, faultstring, faultactor, detail);
t hr ow new SOAPFaul t Exception(fault);

©CoOo~NOoOUh~,WNE

6.4.2 One-way Operations

& Conformance (One-way operationd)’hen sending a one-way message, implementations MUST throw
aVebServi ceExcepti onif any error is detected when sending the message.

78 JAX-WS 2.0 April 19, 2006

Chapter 7

Annotations

This chapter describes the annotations used by JAX-WS.

For simplicity, when describing an annotation we use thmtgroperty” in lieu of the more correct “an-
notation elements”. Also, for each property we list the difaalue, which is the default as it appears in
the declaration of the annotation type. Often propertie® hegical defaults which are computed based on
contextual information and, for this reason, cannot beuwraptusing the annotation element default facility
built into the language. In this case, the text described titealogical default is and how it is computed.

JAX-WS 2.0 uses annotations extensively. For an annotdtidme correct, besides being syntactically
correct, e.g. placed on a program element of the appropyipte it must obey a set of constraints detailed
in this specification. For annotations defined by JSR-1B&, annotation in question must also obey the
constraints in the relevant specification (se€ [13]).

< Conformance (Correctness of annotation&jr implementation MUST check at runtime that the annota-
tions pertaining to a method being invoked, either on thentlor on the server, as well as any containing
program elements (i.e. classes, packages) is in confoemaitie the specification for that annotation

{ Conformance (Handling incorrect annotationd)an incorrect or inconsistent annotation is detected:

* In a client setting, an implementation MUST NOT invoke thenote operation being invoked, if any.
Instead, it MUST throw &\ebSer vi ceExcept i on, setting its cause to an exception approximating
the cause of the error (e.g. ahl egal Ar gunent Except i on or ad assNot FoundExcepti on).

* In a server setting, annotation, an implementation MUSTINi3patch to an endpoint implementa-
tion object. Rather, it MUST generate a fault appropriatéhéobinding in use.

An implementation may check for correctness in a lazy washattime a method is invoked or a request
is about to be dispatched to an endpoint, or more aggregse/gl. when creating a proxy. In a container
environment, an implementation may perform any correstcbecks at deployment time.

7.1 javax.xml.ws.ServiceMode

TheSer vi ceMbde annotation is used to specify the mode for a provider classwihether a provider wants
to have access to protocol message payloads (e.g. a SOAI diothe entire protocol messages (e.g. a
SOAP envelope).

April 19, 2006 JAX-WS 2.0 79

Chapter 7. Annotations

Table 7.1:Ser vi ceMbde properties.

Property Description Default

val ue The service mode, one of javax.xml.ws-
javax.xml.ws.Service.Mode. MESSAGE or .Service.Mode-
javax.xml.ws.Service.Mode.PAYLOAD. .PAYLOAD

MESSAGE means that the whole protocol
message will be handed to the provider
instance, PAYLOAD that only the payload of
the protocol message will be handed to the
provider instance.

The Ser vi ceMbde annotation type is marke@ nher i t ed, so the annotation will be inherited from the
superclass.

7.2 javax.xml.ws.WebFault

ThewebFaul t annotation is used when mapping WSDL faults to Java exaeptsee sectidn2.5. It is used
to capture the name of the fault element used when marshdhim JAXB type generated from the global
element referenced by the WSDL fault message. It can alsség to customize the mapping of service
specific exceptions to WSDL faults.

Table 7.2:WebFaul t properties.

Property Description Default

name The local name of the element

t ar get Nanespace The namespace name of the element

f aul t Bean The fully qualified name of the fault bean ™
class

7.3 javax.xml.ws.RequestWrapper

TheRequest W apper annotation is applied to the methods of an SEI. It is used ptuca the JAXB gen-
erated request wrapper bean and the element name and nam&spaarshalling / unmarshalling the bean.
The default value of ocal Nane element is th@per at i onNane as defined inébMet hod annotation and
the default value for thear get Namespace element is the target namespace of the SEI. When starting fro
Java, this annotation is used to resolve overloading ctsmfticdlocument literal mode. Only tlee assNane
element is required in this case.

Table 7.3:Request W apper properties.

Property Description Default
| ocal Nane The local name of the element

t ar get Nanespace The namespace name of the element
cl assNane The name of the wrapper class

80 JAX-WS 2.0 April 19, 2006

7.6. javax.xml.ws.WebEndpoint

7.4 javax.xml.ws.ResponseWrapper

The ResponseW apper annotation is applied to the methods of an SEI. It is used pduca the JAXB
generated response wrapper bean and the element name aggpaamfor marshalling / unmarshalling the
bean. The default value of thecal Nane element is theper at i onNane as defined in th&ébMet hod
appended with "Response” and the default value of tireget Nanespace element is the target namespace
of the SEI. When starting from Java, this annotation is usesolve overloading conflicts in document
literal mode. Only thel assNane element is required in this case.

Table 7.4:ResponseW apper properties.

Property Description Default
| ocal Nane The local name of the element

t ar get Nanespace The namespace name of the element
cl assNane The name of the wrapper class

7.5 javax.xml.ws.WebServiceClient

ThewebSer vi ced i ent annotation is specified on a generated service clas§ (@gelPis used to asso-
ciate a class with a specific Web service, identify by a URlat/SDL document and the qualified name
of awsdl : servi ce element.

Table 7.5:WebSer vi ced i ent properties.

Property Description Default

name The local name of the service

t ar get Namespace The namespace name of the service

wsdl Locati on The URL for the WSDL description of the ™"
service

When resolving the URI specified as thedl Locat i on element or any document it may transitively
reference, a JAX-WS implementation MUST use the cataloiljtiadefined in sectiod.414.

7.6 javax.xml.ws.WebEndpoint

The WebEndpoi nt annotation is specified on thget PortNamé) methods of a generated service class
(sedZJ). Itis used to associate a get method with a spesifit: port, identified by its local name (a
NCNane).

Table 7.6:WebEndpoi nt properties.

Property Description Default
name The local name of the port

April 19, 2006 JAX-WS 2.0 81

Chapter 7. Annotations

7.6.1 Example

The following shows a WSDL extract and the resulting gemeratervice class.

©CoOo~NOoOULhr~, WNE

7.7

<l-- WBDL extract -->
<wsdl : servi ce nane="St ockQuot eServi ce">

<wsdl : port nane="St ockQuot eHTTPPort" bi ndi ng="St ockQuot eHTTPBi ndi ng"/ >
<wsdl : port nane="St ockQuot eSMIPPort" bi ndi ng="St ockQuot eSMIPBi ndi ng"/ >

</ wsdl : servi ce>

/'l Generated Service Interface
@\ébServi ced i ent (name="St ockQuot eSer vi ce",

tar get Nanespace="...",
wsdl Location="...")

public class StockQuoteService extends javax.xm .ws. Service {

public StockQuoteService() {
super (wsdl Locati on_fromAnnot ati on, servi ceNanme_fromAnnot ati on);

}

public StockQuoteService(String wsdl Locati on, QNane servi ceName) {

}
@\¢bEndpoi nt (nane=" St ockQuot eHTTPPort ")

public StockQuoteProvider get StockQuoteHTTPPort () {
return (StockQuoteProvider)super.gePort (portName, StockQuoteProvider.class);

}

@\¢bEndpoi nt (nane=" St ockQuot eSMIPPort ")
public StockQuoteProvider get StockQuoteSMIPPort () {
return (StockQuoteProvi der)super.getPort(portName, StockQuoteProvider.class);

}

javax.xml.ws.WebServiceProvider

The WebSer vi cePr ovi der annotation is specified on classes that implement a siyaygedj avax-
.xm . ws. Provi der. Itis used to declare that a class that satisfies the ragemés for a provider (see
[E.7) does indeed define a Web service endpoint, much like¢h&er vi ce annotation does for SEl-based
endpoints.

TheWebSer vi cePr ovi der andWebSer vi ce annotations are mutually exclusive.

& Conformance (WebServiceProvider and WebServiéeglass annotated with th&bSer vi cePr ovi der
annotation MUST NOT carry @ébSer vi ce annotation.

82

Table 7.7:WebSer vi cePr ovi der properties.

Property Description Default
wsdl Locati on The URL for the WSDL description
servi ceNane The name of the service
port Nanme The name of the port

t ar get Nanespace The target namespace for the service

JAX-WS 2.0 April 19, 2006

7.9. javax.xml.ws.WebServiceRef

When resolving the URL specified as thedl Locat i on element or any document it may transitively
reference, a JAX-WS implementation MUST use the cataloiljtiadefined in sectiod.414.

7.8 javax.xml.ws.BindingType

The Bi ndi ngType annotation is applied to an endpoint implementation cldtsspecifies the binding to
use when publishing an endpoint of this type.

Table 7.8:Bi ndi ngType properties.

Property Description Default
val ue The binding ID (a URI)

The default binding for an endpoint is the SOAP 1.1/HTTP @®e (chaptdr0).

7.9 javax.xml.ws.WebServiceRef

The WebSer vi ceRef annotation is used to declare a reference to a Web servidellolvs the resource
pattern exemplified by thpavax. annot at i on. Resour ce annotation in JSR-250129].

ThewebSer vi ceRef annotation is required to be honored when running on the HBva platform, where
it is subject to the common resource injection rules deedrly the platform specification [30].

Table 7.9:WebSer vi ceRef properties.

Property Description Default
name The name identifying the Web service
reference.

wsdl Locati on A URL pointing to the location of the WSDL ™

document for the service being referred to.
type The resource type as a Java class object bj ect. cl ass
val ue The service type as a Java class object Obj ect. cl ass
mappedNane A product specific name that this resource ™

should be mapped to.

The name of the resource, as defined by tlhee element (or defaulted) is a name that is local to the
application component using the resource. (It's a name énJtiDI java.comp/env namespace.) Many
application servers provide a way to map these local nameant®s of resources known to the application
server. ThisrappedNane is often a global INDI name, but may be a name of any form. Appbn servers
are not required to support any particular form or type of pegpbname, nor the ability to use mapped
names. A mapped name is product-dependent and often atstaldependent. No use of a mapped name
is portable.

There are two uses to thv&bSer vi ceRef annotation:

1. To define a reference whose type is a generated serviss. cla this case, theype andval ue

April 19, 2006 JAX-WS 2.0 83

Chapter 7. Annotations

element will both refer to the generated service class tyyereover, if the reference type can be
inferred by the field/method declaration the annotatioagplied to, the ype andval ue elements
MAY have the default valuedbj ect . cl ass, that is). If the type cannot be inferred, then at least the
t ype element MUST be present with a non-default value.

2. To define a reference whose type is a SEI. In this caset, ythe element MAY be present with its
default value if the type of the reference can be inferrethftbe annotated field/method declaration,
but theval ue element MUST always be present and refer to a generateadsateaiss type (a subtype
of j avax. xm . ws. Servi ce).

Thewsdl Locat i on element, if present, overrides the WSDL location informaspecified in th&ébSer vi ce
annotation of the referenced generated service class.

When resolving the URI specified as thedl Locati on element or any document it may transitively
reference, a JAX-WS implementation MUST use the cataloiljtiadefined in sectiod.4}4.

7.9.1 Example

The following shows both uses of thébSer vi ceRef annotation.

1

2 /] Cenerated Service Interface

3

4 @\eébServiced ient (name="St ockQuot eServi ce",

5 t ar get Nanmespace="...",

6 wsdl Location="...")

7 public interface StockQuoteService extends javax.xm .ws. Service {
8 @\ebEndpoi nt (nane=" St ockQuot eHTTPPort ")

9 St ockQuot ePr ovi der get St ockQuot eHTTPPort () ;
10

11 @\ebEndpoi nt (nane=" St ockQuot eSMIPPort ")

12 St ockQuot eProvi der get St ockQuot eSMIPPort () ;
13 }

14

15 // Cenerated SEl

16

17 @+bServi ce(nane="St ockQuot ePr ovi der",

18 t ar get Namespace="...")

19 public interface StockQuoteProvider {
20 Doubl e get St ockQuote(String ticker);
21}
22
23 /] Sample client code
24

25 (@bt atel ess
26 public dientConponent {

27

28 /1 WebServi ceRef using the generated service interface type
29 @\ebSer vi ceRef

30 public StockQuoteService stockQuoteService;

31

32 /1 WebServi ceRef using the SElI type

33 @\ebServi ceRef (St ockQuot eSer vi ce. cl ass)

34 private StockQuoteProvider stockQuoteProvider;

84 JAX-WS 2.0 April 19, 2006

7.11. Annotations Defined by JSR-181

35
36 /1 other nethods go here...
37 1}

7.10 javax.xml.ws.WebServiceRefs

TheWebSer vi ceRef s annotation is used to declare multiple references to Walicgsron a single class.

It is necessary to work around the limition against spesgyrepeated annotations of the same type on
any given class, which prevents listing multiglavax. ws. WebSer vi ceRef annotations one after the
other. This annotation follows the resource pattern exgieglby thej avax. annot ati on. Resour ces
annotation in JSR-250129].

Since no name and type can be inferred in this case,wat$er vi ceRef annotation inside ®bSer vi ceRef s
MUST containnane andt ype elements with non-default values.

ThewebSer vi ceRef annotation is required to be honored when running on the HBva platform, where
it is subject to the common resource injection rules deedrly the platform specification [30].

Table 7.10:WebSer vi ceRef s properties.

Property Description Default
val ue An array ofWebSer vi ceRef annotations, {}
each defining a web service reference.

7.10.1 Example

The following shows how to use th&bSer vi ceRef s annotation to declare at the class level two web
service references. The first one uses the SEI type, whéle¢hond one uses a generated service class type.

1

2 @\bServi ceRef s({ @¥bServi ceRef (name="accounti ng"

3 t ype=Account i ngPort Type. cl ass,
4 val ue=Accounti ngServi ce. cl ass),
5 @\ébServi ceRef (name="payrol | ",

6 type=Payrol | Service. cl ass)})

7 (@bt atel ess

8 public MyConmponent {

9

10 /1 methods using the declared resources go here...

11 }

7.11 Annotations Defined by JSR-181

In addition to the annotations defined in the precedingieest JAX-WS 2.0 uses several annotations def-
ined by JSR-181.

{ Conformance (JSR-181 conformancé).JAX-WS 2.0 implementation MUST be conformant to the JAX-
WS profile of JISR-181 1.1113].

April 19, 2006 JAX-WS 2.0 85

Chapter 7. Annotations

As a convenience to the reader, the following sections chpre the definition of the JSR-181 annotations
applicable to JAX-WS.

7.11.1 javax.jws.WebService

@rar get ({ TYPE})

public @nterface WbService {
String nane() default "";
String target Nanespace() default
String serviceNane() default
String wsdl Location() default
String endpointinterface() default "";
String portName() default "";

©CoOo~NOoO U~ WNE

Consistently with the URI resolution process in JAX-WS, whesolving the URI specified as thedl Locat i on
element or any document it may transitively reference, a-¥## implementation MUST use the catalog
facility defined in sectioi414.

7.11.2 javax.jws.WebMethod

@rar get ({ METHOD})

public @nterface WebMet hod {
String operationNanme() default
String action() default "" ;
bool ean exclude() default false;

H

OO WNPE

7.11.3 javax.jws.OneWay

1 @arget ({ METHOD})
2 public @nterface Oneway {
3}

7.11.4 javax.jws.WebParam

1 @arget ({ PARAMETER})

2 public @nterface WebParam {

3 public enum Mode { IN, QUT, |NOUT };
4

5 String name() default

6 String target Nanespace() default "";
7 Mode node() default Mode.IN;

8 bool ean header () default false;

9 String part Name() default ""

10

7.11.5 javax.jws.WebResult

1 @arget ({ METHOD})

86 JAX-WS 2.0 April 19, 2006

7.11. Annotations Defined by JSR-181

2 public @nterface WebResult {

3 String nane() default "return";

4 String target Nanespace() default "";
5 bool ean header () default fal se;

6 String part Name() default ""

7

7.11.6 javax.jws.SOAPBiInding
@rarget ({ TYPE, METHOD})
public @nterface SOAPBI ndi ng {
public enum Style { DOCUMENT, RPC }
public enum Use { LI TERAL, ENCODED }

public enum ParaneterStyle { BARE, WRAPPED }

O©CoO~NOOOUTA,WNLPE

Style style() default Style. DOCUMENT;
10 Use use() default Use. Ll TERAL;
11 Par amet er Styl e paraneterStyl e() default ParaneterStyl e. WRAPPED;

7.11.7 javax.jws.HandlerChain

@rarget ({TYPE})

public @nterface Handl erChain {
String file();
String name() default

O b wWNPE

April 19, 2006 JAX-WS 2.0

87

Chapter 7. Annotations

88

JAX-WS 2.0

April 19, 2006

Chapter 8

Customizations

This chapter describes a standard customization fadildayd¢an be used to customize the WSDL 1.1 to Java
binding defined in sectionl 2.

8.1 Binding Language

JAX-WS 2.0 defines an XML-based language that can be useokttifg customizations to the WSDL 1.1
to Java binding. In order to maintain consistency with JAXE, call it abinding language Similarly,
customizations will hereafter be referred tob@sding declarations

All XML elements defined in this section belong to thet p: / / j ava. sun. coni xm / ns/ j axws names-
pace. For clarity, the rest of this section uses qualifiedneint names exclusively. Wherever it appears, the
j axws prefix is assumed to be bound to thiet p: / / j ava. sun. coml xm / ns/ j axws namespace name.

The binding language is extensible. Extensions are exguassng elements and/or attributes whose names-
pace name is different from the one used by this specificatio

{ Conformance (Standard binding declaratioriBlve ht t p: / / j ava. sun. com xm / ns/ j axws names-
pace is reserved for standard JAX-WS binding declaratitm@lementations MUST support all standard
JAX-WS binding declarations. Implementation-specifinding declaration extensions MUST NOT use the
http://java. sun. com xm / ns/j axws namespace.

& Conformance (Binding language extensibilithynplementations MUST ignore unknown elements and
attributes appearing inside a binding declaration whoseespace name is not the one specified in the
standard, i.ehtt p: //j ava. sun. com xm / ns/j axws.

8.2 Binding Declaration Container

There are two ways to specify binding declarations. In tret ipproach, all binding declarations pertaining
to a given WSDL document are grouped together in a standalonament, called aexternal binding
file (see[81). The second approach consists in embeddedinigditeclarations directly inside a WSDL
document (see8.3).

In either case, theaxws: bi ndi ngs element is used as a container for JAX-WS binding declaratidt
contains a (possibly empty) list of binding declaratiomsamy order.

April 19, 2006 JAX-WS 2.0 89

Chapter 8. Customizations

<j axws: bi ndi ngs wsdl Locati on="xs: anyURI " ?
node="xs:string"?
versi on="string"?>
...binding declarations...
</ j axws: bi ndi ngs>

b wN k-

Figure 8.1: Syntax of the binding declaration container

Semantics

@wsdlLocation A URI pointing to a WSDL file establishing the scope of the s of this binding
declaration. It MUST NOT be present if theaxws: bi ndi ngs element is used as an extension
inside a WSDL document or one of its ancestaixws: bi ndi ngs elements already contains this
attribute.

@node An XPath expression pointing to the element in the WSDL filsgope that this binding declaration
is attached to. It MUST NOT be present if thexws: bi ndi ngs appears inside a WSDL document.

@version A version identifier. It MUST NOT appear opaxws: bi ndi ngs elements which have any
j axws: bi ndi ngs ancestors (i.e. on non top-level binding declarations).

For the JAX-WS 2.0 specification, the version identifidrpiesent, MUST be 2. 0". If the @er si on
attribute is absent, it will implicitly be assumed to be0.

8.3 Embedded Binding Declarations

An embedded binding declaration is specified by usingj tivews: bi ndi ngs element as a WSDL exten-
sion. Embedded binding declarations MAY appear on any oélbments in the WSDL 1.1 namespace that
accept extension elements, per the schema for the WSDL ingspmce as amended by the WS-I Basic
Profile 1.1[17].

A binding declaration embedded in a WSDL document can origcathe WSDL element it extends. When
aj axws: bi ndi ngs element is used as a WSDL extension, it MUST NOT hawede attribute. Moreover,
it MUST NOT have an element whose qualified namgdsws: bi ndi ngs amongs its children.

8.3.1 Example

Figure[8.2 shows a WSDL document containing binding detitaraxtensions. For JAXB annotations, it
assumes that the prefixaxb is bound to the namespace name p: //j ava. sun. com xm / ns/ j axb.

8.4 External Binding File

Thej axws: bi ndi ngs element MAY appear as the root element of a XML document. Sudbcument is
called arexternal binding file

An external binding file specifies bindings for a given WSBacument. The WSDL document in question
is identified via the mandatorwsdl Locat i on attribute on the roof axws: bi ndi ngs element in the
document.

90 JAX-WS 2.0 April 19, 2006

8.4. External Binding File

O©CoO~NOOOUOTA,WNLPE

<wsdl : definitions target Nanespace="..." xnmns:tns=..." xmns:stns="...">
<wsdl : types>
<xs:schemm tar get Nanmespace="http://exanpl e. org/ bar" >
<xs:annot ati on>
<xs: appi nf o>
<j axb: bi ndi ngs>
...sone JAXB bindi ng decl arations..
</ j axb: bi ndi ngs>
</ xs: appi nf o>
</ xs: annot ati on>
<xs: el enent name="set Last TradePri ce">
<xs: conpl exType>
<XS:sequence>
<xs: el enent nanme="ti cker Synbol" type="xs:string"/>
<xs: el enent nanme="I| ast TradePri ce" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el enent nanme="set Last TradePri ceResponse" >
<xs: conpl exType>
<xs:sequence/ >
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>
</ wsdl : types>

<wsdl : message nane="set Last TradePri ce" >
<wsdl : part nane="setPrice" el enent="stns: setlLast TradePrice"/>
</ wsdl : nessage>

<wsdl : message nane="set Last TradePri ceResponse" >

<wsdl : part nane="set Pri ceResponse" type="stns: setlast TradePri ceResponse"/>

</ wsdl : nessage>

<wsdl : port Type nane="St ockQuot eUpdat er " >
<wsdl : operati on nane="set Last TradePri ce">
<wsdl : i nput nmessage="tns: set Last TradePri ce"/>
<wsdl : out put nessage="tns: set Last TradePri ceResponse"/ >
<j axws: bi ndi ngs>
<j axws: net hod nane="updat ePrice"/ >
</ j axws: bi ndi ngs>
</ wsdl : oper ati on>
<j axws: bi ndi ngs>
<j axws: enabl eAsyncMappi ng>t r ue</ j axws: enabl eAsyncMappi ng>
</ j axws: bi ndi ngs>
</ wsdl : port Type>

<j axws: bi ndi ngs>
<j axws: package nanme="com acne. f 00"/ >
...addi tional binding declarations..

</ j axws: bi ndi ngs>

</wsdl : definitions>

Figure 8.2: Sample WSDL document with embedded bindingadatibns

April 19, 2006 JAX-WS 2.0 91

Chapter 8. Customizations

In an external binding filej axws: bi ndi ngs elements MAY appear as non-root elements, e.g. as a child
or descendant of the ropaixws: bi ndi ngs element. In this case, they MUST carrypade attribute iden-
tifying the element in the WSDL document they annotate. Tdatjraxws: bi ndi ngs element implicitly
contains anode attribute whose value i/, i.e. selecting the root element in the document. An XPath ex
pression on a non-roptaxws: bi ndi ngs element selects zero or more nodes from the set of nodesestlec
by its parenf axws: bi ndi ngs element.

External binding files are semantically equivalent to edd®sl binding declarations (sE€l8.3). When a
JAX-WS implementation processes a WSDL document for whielnet is an external binding file, it MUST
operate as if all binding declarations specified in themkbinding file were instead specified as embedded
declarations on the nodes in the in the WSDL document thggetait is an error if, upon embedding the
binding declarations defined in one or more external bigdiles, the resulting WSDL document contains
conflicting binding declarations.

& Conformance (Multiple binding files)implementations MUST support specifying any number of exte
nal JAX-WS and JAXB binding files for processing in conjupatwith at least one WSDL document.

Please refer to secti@n 8.5 for more information on proogs3AXB binding declarations.

8.4.1 Example

Figured 8B anfi’8 4 show an example external binding file\&&MDL document respectively that express
the same set of binding declarations as the WSDL docum&nBid.8

©CoOoO~NOUTA~,WNE

<j axws: bi ndi ngs wsdl Locati on="http://exanpl e. org/foo.wsdl ">
<j axws: package nanme="com acne. f 00"/ >
<j axws: bi ndi ngs
node="wsdl : t ypes/ xs: scheng[t ar get Namespace="http://exanpl e.org/bar’]">
<j axb: bi ndi ngs>
...sone JAXB bi ndi ng decl arations..
</ j axb: bi ndi ngs>
</ j axws: bi ndi ngs>
<j axws: bi ndi ngs node="wsdl : port Type[@ane=" St ockQuot eUpdater’]">
10 <j axws: enabl eAsyncMappi ng>t rue</ j axws: enabl eAsyncMappi ng>
11 <j axws: bi ndi ngs node="wsdl : operati on[@anme="set Last TradePrice’']">
12 <j axws: net hod nane="updat ePrice"/ >
13 </ j axws: bi ndi ngs>
14 </j axws: bi ndi ngs>
15 ...additional binding declarations...
16 </ j axws: bi ndi ngs>

Figure 8.3: Sample external binding file for WSDL in figlr£l8

8.5 Using JAXB Binding Declarations

It is possible to use JAXB binding declarations in conjumativith JAX-WS.

The JAXB 2.0 bindings element, henceforth referred tpad: bi ndi ngs, MAY appear as an annotation
inside a schema document embedded in a WSDL document, ieedescendant ofas: schenma element
whose parent is thesdl : t ypes element. It affects the data binding as specified by JAXB 2.0

92 JAX-WS 2.0 April 19, 2006

8.5. Using JAXB Binding Declarations

O©CoOoO~NOUTA~,WNE

<wsdl : definitions target Nanespace="..." xnmns:tns="..." xmns:stns="...">
<wsdl : types>
<xs:schemn t ar get Namespace="htt p://exanpl e. org/ bar" >
<xs: el enent nanme="set Last TradePri ce">
<xs: conpl exType>
<XS:sequence>
<xs: el enent name="ticker Synbol" type="xs:string"/>
<xs: el enent nanme="I| ast TradePrice" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el enent name="set Last TradePri ceResponse" >
<xs: conpl exType>
<xs:sequence/ >
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>
</ wsdl : types>

<wsdl : message nane="set Last TradePri ce" >
<wsdl : part nane="setPrice" el enent="stns: setLast TradePrice"/>
</ wsdl : nessage>

<wsdl : message nane="set Last TradePri ceResponse" >
<wsdl : part nane="set Pri ceResponse”
type="stns: set Last TradePri ceResponse"/ >
</ wsdl : nessage>

<wsdl : port Type nanme="St ockQuot eUpdat er " >
<wsdl : operati on nane="set Last TradePri ce">
<wsdl : i nput nessage="tns: set Last TradePrice"/>
<wsdl : out put nessage="tns: set Last TradePri ceResponse"/ >
</ wsdl : operati on>
</ wsdl : port Type>
</ wsdl : definitions>

Figure 8.4: WSDL document referred to by external bindimg ifi figure[8.3

April 19, 2006 JAX-WS 2.0 93

Chapter 8. Customizations

Additionally, j axb: bi ndi ngs MAY appear inside a JAX-WS external binding file as a childapfaxws: -

bi ndi ngs element whoseaode attribute points to as: scherma element inside a WSDL document. When
the schema is processed, the outcome MUST be as jfakb: bi ndi ngs element was inlined inside the
schema document as an annotation on the schema component.

While processing a JAXB binding declaration (i.ej @axb: bi ndi ngs element) for a schema document
embedded inside a WSDL document, all XPath expressiongpear inside it MUST be interpreted as if
the containings: schena element was the root of a standalone schema document.

Editors Note 8.1 This last requirement ensures that JAXB processors dowe ha be extended to incor-
porate knowledge of WSDL. In particular, it becomes poedibltake a JAXB binding file and embed it in a
JAX-WS binding file as-is, without fixing up all its XPatlpmssions, even in the case that the XML Schema
the JAXB binding file refers to was embedded in a WSDL.

8.6 Scoping of Bindings

Binding declarations are scoped according to the pardaht-brerarchy in the WSDL document. For in-
stance, when determining the value of fhexws: enabl eW apper St yl e customization parameter for a
portType operation, binding declarations MUST be proagssehe following order, according to the el-
ement they pertain to: (1) the portType operation in quast(@) its parent portType, (3) the definitions
element.

Tools MUST NOT ignore binding declarations. It is an errougon applying all the customizations in
effect for a given WSDL document, any of the generated Jaueceacode artifacts does not contain legal
Java syntax. In particular, it is an error to use any resekegwords as the name of a Java field, method,
type or package.

8.7 Standard Binding Declarations

The following sections detail the predefined binding deatians, classified according to the WSDL ele-
ment they're allowed on. All these declarations reside miht p: //j ava. sun. coml xni / ns/ j axws
namespace.

8.7.1 Definitions

The following binding declarations MAY appear in the coriteka WSDL document, either as an exten-
sion to thewsdl : defi ni ti ons element or in an external binding file at a place where thei@\WSDL
document in scope.

1 <j axws: package name="xs:string">?

2 <j axws: j avadoc>xs: string</jaxws:javadoc>?
3 </j axws: package>
4

<j axws: enabl eW apper St yl e>?
Xs: bool ean
</ j axws: enabl eW apper St yl e>

<j axws: enabl eAsyncMappi ng>?

5
6
7
8
9
0 xs: bool ean

1

94 JAX-WS 2.0 April 19, 2006

8.7. Standard Binding Declarations

11 </ j axws: enabl eAsyncMappi ng>

12

13 <j axws: enabl eM MECont ent >?

14 Xs: bool ean

15 </ j axws: enabl eM MECont ent >
Semantics

package/@nameName of the Java package for the targetNamespace of thet pamdin defi ni ti ons
element.

package/javadoc/text() Package-level javadoc string.

enableWrapperStyle If present with a boolean value of ue (resp. f al se), wrapper style is enabled
(resp. disabled) by default for all operations.

enableAsyncMapping If present with a boolean value of ue (resp.f al se), asynchronous mappings are
enabled (resp. disbled) by default for all operations.

enableMIMEContent If present with a boolean value of ue (resp.f al se), use of theri ne: cont ent
information is enabled (resp. disabled) by default for pktations.

Theenabl eW apper St yl e declaration only affects operations that qualify for theapger style per the
JAX-WS specification. By default, this declarationtisue, i.e. wrapper style processing is turned on
by default for all qualified operations, and must be disddy using g axws: enabl eW apper Styl e
declaration with a value dfal se in the appropriate scope.

8.7.2 PortType

The following binding declarations MAY appear in the corteka WSDL portType, either as an extension
to thewsdl : port Type element or with aode attribute pointing at one.

<j axws: cl ass nane="xs:string">?
<j axws: j avadoc>xs: string</jaxws:javadoc>?
</jaxws:cl ass>

<j axws: enabl eW apper St yl e>?
xs: bool ean
</j axws: enabl eW apper St yl e>

O©oO~NOOOUTA,WNLPE

<j axws: enabl eAsyncMappi ng>xs: bool ean</j axws: enabl eAsyncMappi ng>?

Semantics

class/@nameFully qualified name of the generated service endpointfate corresponding to the parent
wsdl : port Type.

class/javadoc/text() Class-level javadoc string.

enableWrapperStyle If present with a boolean value of ue (resp. f al se), wrapper style is enabled
(resp. disabled) by default for all operations in thesdl : port Type.

April 19, 2006 JAX-WS 2.0 95

Chapter 8. Customizations

enableAsyncMapping If present with a boolean value of ue (resp.f al se), asynchronous mappings are
enabled (resp. disabled) by default for all operationsisvkdl : port Type.

8.7.3 PortType Operation

The following binding declarations MAY appear in the coriteka WSDL portType operation, either as an
extension to thesdl : port Type/ wsdl : oper ati on element or with anode attribute pointing at one.

O©CoO~NOOUTA,WNPEP

<j axws: net hod nanme="xs:string">?
<j axws: j avadoc>xs: string</jaxws:javadoc>?
</j axws: nmet hod>
<j axws: enabl eW apper Styl e>?
Xs: bool ean
</ j axws: enabl eW apper St yl e>
<j axws: enabl eAsyncMappi ng>?
10 xs: bool ean
11 </ j axws: enabl eAsyncMappi ng>
13 <j axws: parameter part="xs:string"
14 chi | dEl enent Name="xs: QNane" ?
15 nane="xs: string"/ >
Semantics

method/@name Name of the Java method corresponding totsidl : oper at i on.
method/javadoc/text() Method-level javadoc string.

enableWrapperStyle If present with a boolean value of ue (resp. f al se), wrapper style is enabled
(resp. disabled) by default for thigsdl : oper ati on.

enableAsyncMapping If present with a boolean value of ue, asynchronous mappings are enabled by
default for thiswsdl : oper ati on.

parameter/@part A XPath expression identifyingwsdl : part child of awsdl : message.

parameter/@childElementName The qualified name of a child element information item of tiebal
type definition or global element declaration referredydahewsdl : part identified by the previous
attribute.

parameter/@name The name of the Java formal parameter corresponding to ttaengter identified by
the previous two attributes.

It is an error if two parameters that do not correspond to #mesJava formal parameter are assigned the
same name, or if a part/element that corresponds to the Jetvenchreturn value is assigned a name.

96 JAX-WS 2.0 April 19, 2006

[

8.7. Standard Binding Declarations

8.7.4 PortType Fault Message

The following binding declarations MAY appear in the coriteka WSDL portType operation’s fault mes-
sage, either as an extension to taall : port Type/ wsdl : operati on/ wsdl : f aul t element or with a
node attribute pointing at one.

<j axws: cl ass nane="xs:string">?
<j axws: j avadoc>xs: string</jaxws:javadoc>?
</jaxws: cl ass>
Semantics

class/@nameThe name of the generated exception class for this fault.

class/javadoc/text() Class-level javadoc string.

Itis an error if faults that refer to the samed| : nessage element are mapped to exception classes with
different names.

8.7.5 Binding

The following binding declarations MAY appear in the cornteka WSDL binding, either as an extension
to thewsdl : bi ndi ng element or with aode attribute pointing at one.

N

1 <j axws: enabl eM MECont ent >?
Xs: bool ean
3 </ j axws: enabl eM MECont ent >
Semantics

enableMIMEContent If present with a boolean value of ue (resp.f al se), use of thari ne: cont ent
information is enabled (resp. disabled) for all operatimnthis binding.

8.7.6 Binding Operation

The following binding declarations MAY appear in the conteka WSDL binding operation, either as an
extension to thesdl : bi ndi ng/ wsdl : oper ati on element or with amode attribute pointing at one.

<j axws: enabl eM MECont ent >?
Xs: bool ean
</ j axws: enabl eM MECont ent >

<j axws: parameter part="xs:string"
chi | dEl enent Nane="xs: QNane" ?
nane="xs: string"/ >

<j axws: exception part="xs:string">x
<j axws: cl ass name="xs: string">?

OOWO~NOULA, WNPE

April 19, 2006 JAX-WS 2.0 97

Chapter 8. Customizations

11 <j axws: j avadoc>xs: string</jaxws:javadoc>?
12 </jaxws:cl ass>
13 </jaxws: excepti on>

Semantics

enableMIMEContent If present with a boolean value of ue (resp.f al se), use of theri ne: cont ent
information is enabled (resp. disabled) for this operation

parameter/@part A XPath expression identifyingwsdl : part child of awsdl : message.

parameter/@childElementName The qualified name of a child element information item of tiebal
type definition or global element declaration referredydahewsdl : par t identified by the previous
attribute.

parameter/@name The name of the Java formal parameter corresponding to ttaengder identified by
the previous two attributes. The parameter in question Md&Tespond to aoap: header exten-
sion.

8.7.7 Service

The following binding declarations MAY appear in the corteka WSDL service, either as an extension
to thewsdl : servi ce element or with amode attribute pointing at one.

1 <j axws: cl ass nane="xs:string">?

2 <j axws: j avadoc>xs: string</jaxws:javadoc>?
3 </jaxws:cl ass>

Semantics

class/@nameThe name of the generated service interface.

class/javadoc/text() Class-level javadoc string.

8.7.8 Port

The following binding declarations MAY appear in the corteka WSDL service, either as an extension
to thewsdl : port element or with anode attribute pointing at one.

1 <j axws: net hod name="xs: string">?

2 <j axws: j avadoc>xs: string</jaxws:javadoc>?
3 </j axws: met hod>

4

5 <j axws: provi der/ >?

Semantics

method/@name The name of the generated port getter method.

98 JAX-WS 2.0 April 19, 2006

8.7. Standard Binding Declarations

method/javadoc/text() Method-level javadoc string.
provider This binding declaration specifies that the annotated pidrbe used with thg avax. xm . ws-

. Provi der interface.

A port annotated with faxws: provi der binding declaration is treated specially. No service einttpo-
terface will be generated for it, since the application cedkeuse in its lieu thg avax. xnl . ws. Provi der
interface. Additionally, the port getter method on the gated service interface will be omitted.

Editors Note 8.2 Omitting a getXYZPort() method is necessary for consigtdrecause if it existed it would
specify the non-existing SEI type as its return type.

April 19, 2006 JAX-WS 2.0 99

Chapter 8. Customizations

100 JAX-WS 2.0 April 19, 2006

Chapter 9

Handler Framework

JAX-WS provides a flexible plug-in framework for messagecpssing modules, known as handlers, that
may be used to extend the capabilities of a JAX-WS runtiméesys This chapter describes the handler
framework in detail.

{ Conformance (Handler framework supporin implementation MUST support the handler framework.

9.1 Architecture

The handler framework is implemented by a JAX-WS protocabbig in both client and server side run-
times. Proxies, an@i spat ch instances, known collectively as binding providers, easd protocol bind-
ings to bind their abstract functionality to specific prodts (see figur€3l1). Protocol bindings can extend
the handler framework to provide protocol specific funatibity; chaptefZI0 describes the JAX-WS SOAP
binding that extends the handler framework with SOAP spefithctionality.

Client and server-side handlers are organized into an eddest known as a handler chain. The handlers
within a handler chain are invoked each time a message i®sesteived. Inbound messages are processed
by handlers prior to binding provider processing. Outboorassages are processed by handlers after any
binding provider processing.

Handlers are invoked with a message context that providébkaug to access and modify inbound and
outbound messages and to manage a set of properties. Messdget properties may be used to facilitate
communication between individual handlers and betweedlbeand client and service implementations.
Different types of handlers are invoked with different tgp message context.

9.1.1 Types of Handler

JAX-WS 2.0 defines two types of handler:

Logical Handlers that only operate on message context propertiegaasage payloads. Logical handlers
are protocol agnostic and are unable to affect protocoliipg@arts of a message. Logical handlers
are handlers that implemejnavax. xnm . ws. handl er. Logi cal Handl er.

Protocol Handlers that operate on message context properties atatplrepecific messages. Protocol
handlers are specific to a particular protocol and may acaerd change protocol specific aspects of a

April 19, 2006 JAX-WS 2.0 101

Chapter 9. Handler Framework

Endpoint

has-a
get Bi ndi ng(): Bi ndi ng \ Binding

get Handl er Chai n() : Li st

BindingProvider set Handl er Chai n(Li st):void
has-a
get Bi ndi ng(): Bi ndi ng one-to-many
implements extends Handler

Proxy Dispatch

Figure 9.1: Handler architecture

message. Protocol handlers are handlers that implememtaniace derived fromavax. xm . ws-
. handl er . Handl er except avax. xm . ws. handl er. Logi cal Handl er .

Figure[Q.2 shows the class hierarchy for handlers.

Handlers for protocols other than SOAP are expected to imgite a protocol-specific interface that extends
javax. xm . ws. handl er. Handl er.

9.1.2 Binding Responsibilities

The following subsections describe the responsibilitih® protocol binding when hosting a handler chain.

9.1.2.1 Handler and Message Context Management

The binding is responsible for instantiation, invocatiand destruction of handlers according to the rules
specified in sectiof 813. The binding is responsible fotanBation and management of message contexts
according to the rules specified in sectionl 9.4

¢ Conformance (Logical handler supporil binding implementations MUST support logical handlers
(see sectioh 8.71.1) being deployed in their handler chains.

{ Conformance (Other handler suppoBinding implementations MAY support other handler typese(s
sectiof9.111) being deployed in their handler chains.

102 JAX-WS 2.0 April 19, 2006

9.1. Architecture

Handler<T>
T extends MessageContext

init(Map<String, Object>):void
destroy():void
handl eMessage(T) : bool ean
handl eFaul t (T) : bool ean
cl ose(MessageCont ext): void

extends extends
LogicalHandler<T> SOAPHandler<T>
T extends LogicalMessageContext T extends SOAPMessageContext

get Header s() : Set <QName>

Figure 9.2: Handler class hierarchy

< Conformance (Incompatible handlerddn implementation MUST thromébSer vi ceExcept i onwhen,
at the time a binding provider is created, the handler cheturned by the configuredand! er Resol ver
contains an incompatible handler.

& Conformance (Incompatible handlergjnplementations MUST throw\aébSer vi ceExcept i onwhen
attempting to configure an incompatible handler usingathedi ng. set Handl er Chai n method.

9.1.2.2 Message Dispatch

The binding is responsible for dispatch of both outbound iabdund messages after handler processing.
Outbound messages are dispatched using whatever meansotbeop binding uses for communication.
Inbound messages are dispatched to the binding providet:WA defines no standard interface between
binding providers and their binding.

9.1.2.3 Exception Handling

The binding is responsible for catching runtime exceptibmewn by handlers and respecting any resulting
message direction and message type change as describetion[8e3.2.

Outbound exceptionsare converted to protocol fault messages and dispatched udiatever means the
protocol binding uses for communication. Specific protdeimdings describe the mechanism for their

1Outbound exceptions are exceptions thrown by a handlerésatt in the message direction being set to outbound aitgprd
to the rules in sectidi 3.3.2.

April 19, 2006 JAX-WS 2.0 103

Chapter 9. Handler Framework

particular protocol, sectidn 10.2.2 describes the meshamor the SOAP 1.1 binding. Inbound exceptions
are passed to the binding provider.

9.2 Configuration

Handler chains may be configured either programmaticallysing deployment metadata. The following
subsections describe each form of configuration.

9.2.1 Programmatic Configuration

JAX-WS only defines APIs for programmatic configurationatient side handler chains — server side han-
dler chains are expected to be configured using deploymetdadata.

9.2.1.1 javax.xml.ws.handler.HandlerResolver

A Servi ce instance maintains a handler resolver that is used whenirgearoxies orDi spat ch in-
stances, known collectively as binding providers. Durihg treation of a binding provider, the handler
resolver currently registered with a service is used toteraghandler chain, which in turn is then used to
configure the binding provider. AServi ce instance provides access tdhandl er Resol ver property,
viatheSer vi ce. get Handl er Resol ver andSer vi ce. set Handl er Resol ver methods. AHandl er -
Resol ver implements a single methoglet Handl er Chai n, which has one argumentPar t | nf o object.
The JAX-WS runtime uses tieor t | nf o argument to pass théandl er Resol ver of the service, port and
binding in use. Thefandl er Resol ver may use any of this information to decide which handlers wins
constructing the requested handler chain.

When aSer vi ce instance is used to create an instance of a binding provider the created instance is
configured with the handler chain created by Hendl er Resol ver instance registered on tiger vi ce
instance at that point in time.

¢ Conformance (Handler chain snapshdfhanging the handler resolver configured foBex vi ce in-
stance MUST NOT affect the handlers on previously createdi@s, orDi spat ch instances.

9.2.1.2 Handler Ordering

The handler chain for a binding is constructed by startir tie handler chain as returned by Heend! er -
Resol ver for the service in use and sorting its elements so that altdbdnandlers precede all protocol
handlers. In performing this operation, the order of harsdé# any given type (logical or protocol) in the
original chain is maintained. Figufe®.3 illustrates this.

Section[3.3P describes how the handler order relates torthex of handler execution for inbound and
outbound messages.

9.2.1.3 javax.jws.HandlerChain annotation

Thej avax. j ws. Handl er Chai n annotation defined by JSR-181]13] may be used to specifydectar-
ative way the handler chain to use for a service.

104 JAX-WS 2.0 April 19, 2006

9.2. Configuration

/Service \

Handler Resolver

L1 P1 P2 L2 P3 P4 P5 L3 P6

- /

Proxy/Dispatch creation

/" Binding Provider N

Binding

L1 | iL2i| | iL3i P1 P2 P3 P4 P5 P6

o /

Figure 9.3: Handler ordering,rLand Fh represent logical and protocol handlers respectively.

When used in conunction with JAX-WS, timanme element of theHandl er Chai n annotation, if present,
MUST have the default value (the empty string).

In addition to appearing on a endpoint implementation aassSEI, as specified by JSR-181, thend| er Chai n
annotation MAY appear on a generated service class. In #sg,dt affects all the proxies amilspat ch
instances created using any of the ports on the service.

& Conformance (HandlerChain annotatio®n implementation MUST support using thiandl er Chai n
annotation on an endpoint implementation class, inclu@irgovider, on an endpoint interface and on a
generated service class.

On the client, thedandl er Chai n annotation can be seen as a shorthand way of defining arallimgta
handler resolver (sée4.1.3).

{» Conformance (Handler resolver for a HandlerChain anrmtatiFor a generated service class (Eeg 2.7)
which is annotated with &landl er Chai n annotation, the default handler resolver MUST return hendl
chains consistent with the contents of the handler chaiorigsr referenced by theandl er Chai n anno-
tation.

Figure[9.3 shows an endpoint implementation class anmbveith aHandl er Chai n annotation.

9.2.1.4 javax.xml.ws.Binding

TheBi ndi ng interface is an abstraction of a JAX-WS protocol bindinge(sectiofLl611 for more details). As
described above, the handler chain initially configuredoinstance is a snapshot of the applicable handlers

April 19, 2006 JAX-WS 2.0 105

Chapter 9. Handler Framework

b wN P

@\ébServi ce
@andl er Chai n(fil e="sanpl e_chain.xm ")
public class MyService {

}

Figure 9.4: Use of thelandl er Chai n annotation

configured on theSer vi ce instance at the time of creatioBi ndi ng provides methods to manipulate the
initially configured handler chain for a specific instance

¢ Conformance (Binding handler manipulatiorffhanging the handler chain oBandi ng instance MUST
NOT cause any change to the handler chains configured orsdhei ce instance used to create the
Bi ndi ng instance.

9.2.2 Deployment Model

JAX-WS defines no standard deployment model for handletssh@ model is provided by JSR 109[14]
“Implementing Enterprise Web Services”.

9.3 Processing Model

This section describes the processing model for handlgrsnithe handler framework.

9.3.1 Handler Lifecycle

In some cases, a JAX-WS implementation must instantiatellbaclasses directly, e.g. in a container
environment or when using thand! er Chai n annotation. When doing so, an implementation must invoke
the handler lifecycle methods as prescribed in this section

If an application does its own instantiation of handlerg,. aising a handler resolver, then the burden of
calling any handler lifecycle methods falls on the applaaitself. This should not be seen as inconsistent,
because handlers are logically part of the applicationhs@ tontract will be known to the application
developer.

The JAX-WS runtime system manages the lifecycle of handdgrgwoking any methods of the handler
class annotated as lifecycle methods before and aftertdispg requests to the handler itself.

The JAX-WS runtime system is responsible for loading thedlenrtlass and instantiating the corresponding
handler object according to the instruction contained énapplicable handler configuration file or deploy-
ment descriptor.

The lifecycle of a handler instance begins when the JAX-W&ime system creates a new instance of the
handler class.

The runtime MUST then carry out any injections requested Hay Handler, typically via thé¢ avax-
. annot at i on. Resour ce annotation. After all the injections have been carried mauding in the case
where no injections were requested, the runtime MUST int&enethod carrying jgavax. annot at i on-
. Post Const ruct annotation, if present. Such a method MUST satisfy the requents in JSR-250 [29]

106 JAX-WS 2.0 April 19, 2006

9.3. Processing Model

for lifecycle methods (i.e. it has a void return type and takero arguments). The handler instance is then
ready for use.

& Conformance (Handler initialization)After injection has been completed, an implementation MUST
call the lifecycle method annotated wikwst Const r uct , if present, prior to invoking any other method
on a handler instance.

Once the handler instance is created and initialized itasqal into theReady state. While in theReady
state the JAX-WS runtime system may invoke other handlehaust as required.

The lifecycle of a handler instance ends when the JAX-WSimmtsystem stops using the handler for
processing inbound or outbound messages. After taking dhdlér offline, a JAX-WS implementation
SHOULD invoke the lifecycle method which carrieg avax. annot at i on. Pr eDest r oy annotation, if
present, so as to permit the handler to clean up its resousced a method MUST satisfy the requirements
in JSR-250[[2B] for lifecycle methods

An implementation can only release handlers after the riestahey are attached to, be it a proxy, a
Di spat ch object, an endpoint or some other component, e.g. a EJBtplgeeleased. Consequently,
in non-container environments, it is impossible to callheDest r oy method in a reliable way, and han-
dler instance cleanup must be left to finalizer methods agdlar garbage collection.

¢ Conformance (Handler destructionin a managed environment, prior to releasing a handlerrinstaan
implementation MUST call the lifecycle method annotatethvifir eDest r oy method, if present, on any
Handl er instances which it instantiated.

The handler instance must release its resources and peatfieamup in the implementation of tPeeDest r oy
lifecycle method. After invocation of thier eDest r oy method(s), the handler instance will be made avail-
able for garbage collection.

9.3.2 Handler Execution

As described in sectidn 9.2.1.2, a set of handlers is managadinding as an ordered list called a handler

chain. Unless modified by the actions of a handler (see hetmrmal processing involves each handler in

the chain being invoked in turn. Each handler is passed aagesontext (see sectibn1d.4) whose contents
may be manipulated by the handler.

For outbound messages handler processing starts withrshadindler in the chain and proceeds in the same
order as the handler chain. For inbound messages the orgesagssing is reversed: processing starts with
the last handler in the chain and proceeds in the reverse oftlee handler chain. E.g., consider a handler
chain that consists of six handlef§; ... Hg in that order: for outbound messages handigrwould be
invoked first followed byH,, Hs, ..., and finally handle; for inbound messageds would be invoked
first followed by Hs, Hy, ..., and finallyH;.

In the following discussion the terms next handler and previhandler are used. These terms are relative
to the direction of the message, tablél 9.1 summarizes thesaning.

Handlers may change the direction of messages and the ditamaler processing by throwing an exception
or by returningf al se from handl eMessage or handl eFaul t . The following subsections describe each
handler method and the changes to handler chain processngnay cause.

April 19, 2006 JAX-WS 2.0 107

Chapter 9. Handler Framework

Message Direction Term Handler

Inbound Next H;,_1
Previous H;iq

Outbound Next H;q

Previous H;_;
Table 9.1: Next and previous handlers for handigr

9.3.2.1 handl eMessage

This method is called for normal message processing. Flipwompletion of its work thénandl e-
Message implementation can do one of the following:

Return t rue This indicates that normal message processing shouldhemntirhe runtime invokesand| e-
Message on the next handler or dispatches the message (see sEdi@mYif there are no further
handlers.

Return f al se This indicates that normal message processing should.c&sdwsequent actions depend
on whether the message exchange pattern (MEP) in use reguiesponse to thmessage currently
being processedor not:

ResponseThe message direction is reversed, the runtime invokesil eMessage on the next
handler or dispatches the message (see sdcfion 9.1.h2jefdre no further handlers.

No responseNormal message processing stagispse is called on each previously invoked handler
in the chain, the message is dispatched (see sdcfion 9.1.2.2

Throw Pr ot ocol Except i on or a subclass This indicates that normal message processing should.cease
Subsequent actions depend on whether the MEP in use requiesponse to the message currently
being processed or not:

ResponseNormal message processing stops, fault message processitsy The message direction
is reversed, if the message is not already a fault messagé taeeplaced with a fault messédge
and the runtime invokebandl eFaul t on the next handler or dispatches the message (see
sectio 9. 1.212) if there are no further handlers.

No responseNormal message processing stagispse is called on each previously invoked handler
in the chain, the exception is dispatched (see seEfion.d)1.2

Throw any other runtime exception This indicates that normal message processing should.c8abse-
guent actions depend on whether the MEP in use includes ansspo the message currently being
processed or not:

ResponseNormal message processing stagispse is called on each previously invoked handler in
the chain, the message direction is reversed, and the éxcéptlispatched (see section 9.112.3).

No responseNormal message processing stagispse is called on each previously invoked handler
in the chain, the exception is dispatched (see seEfion.d)1.2

2For a request-response MEP, if the message direction issesveluring processing of a request message then the message
becomes a response message. Subsequent handler protaesinthis change into account.

3Next in this context means the next handler taking into actthe message direction reversal

“The handler may have already converted the message to afestage, in which case no change is made.

108 JAX-WS 2.0 April 19, 2006

9.4. Message Context

9.3.2.2 handl eFaul t

Called for fault message processing, following completbits work thehandl eFaul t implementation
can do one of the following:

Return t rue This indicates that fault message processing should agntifihe runtime invokelsandl e-
Faul t on the next handler or dispatches the fault message (seerdBcE.2.2) if there are no further
handlers.

Return f al se This indicates that fault message processing should cEasdt. message processing stops,
cl ose is called on each previously invoked handler in the chai félult message is dispatched (see

sectiof9.1.212).

Throw Pr ot ocol Except i on or a subclass This indicates that fault message processing should cease.
Fault message processing stopkpse is called on each previously invoked handler in the chain,
the exception is dispatched (see sedfion 9.11.2.3).

Throw any other runtime exception This indicates that fault message processing should cEBasé.mes-
sage processing stopd,ose is called on each previously invoked handler in the chaim gtkception
is dispatched (see sectibn 9.712.3).

9.3.2.3 close

A handler’'scl ose method is called at the conclusion of a message exchangamp@EP). It is called
just prior to the binding dispatching the final messagelt fauexception of the MEP and may be used to
clean up per-MEP resources allocated by a handler.cThee method is only called on handlers that were
previously invoked via eithdrandl eMessage or handl eFaul t

& Conformance (Invoking| ose): Atthe conclusion of an MEP, an implementation MUST call¢hese
method of each handler that was previously invoked duriagMEP via eithehandl eMessage orhandl e-
Faul t .

< Conformance (Order afl ose invocations): Handlers are invoked in the reverse order in which they
were first invoked to handle a message according to the foiesormal message processing (Ee€®.3.2).

9.3.3 Handler Implementation Considerations

Handler instances may be pooled by a JAX-WS runtime systethingtances of a specific handler are
considered equivalent by a JAX-WS runtime system and artgnioe may be chosen to handle a particular
message. Different handler instances may be used to haaclteneessage of an MEP. Different threads
may be used for each handler in a handler chain, for each geasan MEP or any combination of the
two. Handlers should not rely on thread local state to sha@mrmation. Handlers should instead use the
message context, see secfiod 9.4.

9.4 Message Context

Handlers are invoked with a message context that providekaug to access and modify inbound and
outbound messages and to manage a set of properties.

April 19, 2006 JAX-WS 2.0 109

Chapter 9. Handler Framework

Different types of handler are invoked with different typgfsmessage context. Sectidns 914.1 bnd 9.4.2
describeMessageCont ext andLogi cal MessageCont ext respectively. In addition, JAX-WS bindings
may define a message context subtype for their particutatopol binding that provides access to protocol
specific features. Secti@n_ID.3 describes the messagextanibtype for the JAX-WS SOAP binding.

9.4.1 javax.xml.ws.handler.MessageContext

MessageCont ext is the super interface for all JAX-WS message contexts. tkrelsMap<Stri ng, -

Obj ect > with additional methods and constants to manage a set otgiep that enable handlers in a
handler chain to share processing related state. For egampblandler may use thpit method to insert

a property in the message context that one or more other dranidl the handler chain may subsequently
obtain via theget method.

Properties are scoped as eit®®PLI CATI ON or HANDLER. All properties are available to all handlers for
an instance of an MEP on a particular endpoint. E.g., if aclighandler puts a property in the message
context, that property will also be available to any protdwndlers in the chain during the execution of an
MEP instance APPLI CATI ON scoped properties are also made available to client afiplisa(see section
Z1) and service endpoint implementations. The defaais for a property iSIANDLER.

¢ Conformance (Message context property scopapperties in amessage context MUST be shared across
all handler invocations for a particular instance of an MEBRany particular endpoint.

9.4.1.1 Standard Message Context Properties

Table[9.2 lists the set of standavilssageCont ext properties.

The standard properties form a set of metadata that desdtilzecontext of a particular message. The
property values may be manipulated by client applicatisesyice endpoint implementations, the JAX-WS
runtime or handlers deployed in a protocol binding. A JAX-VWi8time is expected to implement support
for those properties shown as mandatory and may implemepbstfor those properties shown as optional.

Table[Q@.3 lists the standankssageCont ext properties specific to the HTTP protocol. These properties
are only required to be present when using an HTTP-basethbind

Table[@.% lists those properties that are specific to emdpaiunning inside a servlet container. These
properties are only required to be present in the messagextaf an endpoint that is deployed inside a
servlet container and uses an HTTP-based binding.

9.4.2 javax.xml.ws.handler.LogicalMessageContext

Logical handlers (see sectibn@]1.1) are passed a messatg&tauf typelLogi cal MessageCont ext when
invoked. Logi cal MessageCont ext extendsMessageCont ext with methods to obtain and modify the
message payload, it does not provide access to the profmexifis aspects of a message. A protocol binding
defines what component of a message are available via alagiEssage context. E.g., the SOAP binding,
see sectiof 10.1.].2, defines that a logical handler dedlay a SOAP binding can access the contents of
the SOAP body but not the SOAP headers whereas the XML/HTidhrig described in chapter]11 defines
that a logical handler can access the entire XML payload oéssage.

Theget Sour ce() method ofLogi cal MessageCont ext MUST return null whenever the message doesn'’t
contain an actual payload. A case in which this might happemhen, on the server, the endpoint imple-

110 JAX-WS 2.0 April 19, 2006

9.4. Message Context

Table 9.2: StandarbessageCont ext properties.

Name Type

j avax. xm . ws. handl er. nessage

. out bound Boolean Y

javax.xm . ws. bi ndi ng. attachment s

. i nbound Map< String,DataHandles Y

. out bound Map< String,DataHandles Y

j avax. xm . ws. wsdl

.description URI N

.service QNane N

. port QName N

.interface QName N

.operation QName N
April 19, 2006 JAX-WS 2.0

Mandatory Description

Specifies the message directionue
for outbound messagekal se for in-
bound messages.

A map of attachments to an inbound
message. The key is a unique identif-
ier for the attachment. The value is a
Dat aHandl er for the attachment data.

Bindings describe how to carry attach-
ments with messages.

A map of attachments to an outbound
message. The key is a unique identif-
ier for the attachment. The value is a
Dat aHandl er for the attachment data.

Bindings describe how to carry attach-
ments with messages.

A resolvable URI that may be used to
obtain access to the WSDL for the end-
point.

The name of the service being invoked
in the WSDL.

The name of the port over which the
current message was received in the
WSDL.

The name of the port type to which the
current message belongs.

The name of the WSDL operation to
which the current message belongs.
The namespace is the target namespace
of the WSDL definitions element.

111

Chapter 9. Handler Framework

Table 9.3: Standard HTTRessageCont ext properties.

Name Type

javax.xm . ws. http.request

. headers Map< String,List String>> Y

. met hod String Y
.querystring String Y

. pathinfo String Y
javax.xm .ws. http.response

. headers Map< String,List String>> Y

. code Integer Y
112 JAX-WS 2.0

Mandatory Description

A map of the HTTP headers for the re-
guest message. The key is the header
name. The value is a list of values for
that header.

The HTTP method for the request mes-
sage.

The HTTP query string for the
request message, onull if the
request does not have any. If
the address specified using the
javax.xml.ws.service.endpoint.address
in the BindingProvider contains a
query string and if the querystring
property is set by the client it will
override the existing query string in the
javax.xml.ws.service.endpoint.address
property. The value of the property
does not include the leading "?” of the
qguery string in it. This property is only
used with HTTP binding.

Extra path information associated with
the URL the client sent when it made
this request. The extra path informa-
tion follows the base url path but pre-
cedes the query string and will start
with a "/” character.

A map of the HTTP headers for the re-
sponse message. The key is the header
name. The value is a list of values for
that header.

The HTTP response status code.

April 19, 2006

9.4. Message Context

Table 9.4: Standard Servlet Container-Speditis sageCont ext properties.
Name Type Mandatory Description

j avax. xm . ws. servl et

. cont ext javax.servlet.ServletContext Y Theer vl et Cont ext ob-
ject belonging to the web
application that contains the
endpoint.

. request javax.servlet.http.HttpServietRequest Y THte: pSer vl et Request
object associated with the re-
guest currently being served.

.response javax.servlet.http.HttpServietResponse Y The
Ht t pSer vl et Response
object associated with the
request currently being
served.

mentation has thrown an exception and the protocol in use doedefine a notion of payload for faults
(e.g. the HTTP binding defined in chapled 11).

9.4.3 Relationship to Application Contexts

Client side binding providers have methods to access ctinfex outbound and inbound messages. As
described in sectioh 4.2.1 these contexts are used toliretia message context at the start of a message
exchange and to obtain application scoped properties fromssage context at the end of a message ex-
change.

As described in chaptél 5, service endpoint implementstinay require injection of a context from which
they can access the message context for each inbound massbageanipulate the corresponding application-
scoped properties.

Handlers may manipulate the values and scope of properttinvthe message context as desired. E.g.,
a handler in a client-side SOAP binding might introduce adeeanto a SOAP request message to carry
metadata from a property that originated iBiandi ngPr ovi der request context; a handler in a server-side
SOAP binding might add application scoped properties tartessage context from the contents of a header
in a request SOAP message that is then made available in titext@vailable (via injection) to a service
endpoint implementation.

April 19, 2006 JAX-WS 2.0 113

Chapter 9. Handler Framework

114 JAX-WS 2.0 April 19, 2006

Chapter 10

SOAP Binding

This chapter describes the JAX-WS SOAP binding and its si®es to the handler framework (described
in chaptefP) for SOAP message processing.

10.1 Configuration

A SOAP binding instance requires SOAP specific configoratn addition to that described in section]9.2.
The additional information can be configured either prograatically or using deployment metadata. The
following subsections describe each form of configuration

10.1.1 Programmatic Configuration

JAX-WS defines APIs for programmatic configuration of alieside SOAP bindings. Server side bindings
can be configured programmatically when usingEhdpoi nt API (sed5.R), but are otherwise expected to
be configured using annotations or deployment metadata.

10.1.1.1 SOAP Roles

SOAP 1.1[2] and SOAP 112[8] 4] use different terminology floe same concept: a SOAP Jattor is

equivalent to a SOAP 1.@le. This specification uses the SOAP 1.2 terminology.

An ultimate SOAP receiver always plays the following roles:

Next In SOAP 1.1, the next role is identified by the URI http://eofas.xmlsoap.org/soap/actor/next. In
SOAP 1.2, the next role is identified by the URI http://ww\@.xrg/2003/05/soap-envelope/role/next.

Ultimate receiver In SOAP 1.1 the ultimate receiver role is identified by onuesof theact or attribute
from a SOAP header. In SOAP 1.2 the ultimate receiver rolddatified by the URI http://imwww.w3-
.0rg/2003/05/soap-envelope/role/ultimateReceiveryarrhission of the ol e attribute from a SOAP
header.

& Conformance (SOAP required roleshn implementation of the SOAP binding MUST act in the follow-
ing roles: next and ultimate receiver.

A SOAP 1.2 endpoint never plays the following role:

April 19, 2006 JAX-WS 2.0 115

Chapter 10. SOAP Binding

None In SOAP 1.2, the none role is identified by the URI http://wwe8.0rg/2003/05/soap-envelope/role-
/none.

& Conformance (SOAP required roleshn implementation of the SOAP binding MUST NOT act in the
none role.

Thej avax. xm . ws. SOAPBI ndi ng interface is an abstraction of the JAX-WS SOAP binding. teexls
j avax. xml . ws. Bi ndi ng with methods to configure additional SOAP roles played leyghdpoint.

{ Conformance (Default role visibility)An implementation MUST include the required next and ultiena
receiver roles in th&et returned fromSOAPBI ndi ng. get Rol es.

& Conformance (Default role persistencéin implementation MUST add the required next and ultimate
receiver roles to the roles configured withAPBi ndi ng. set Rol es.

< Conformance (None role errorAn implementation MUST throw\bSer vi ceExcepti on if a client
attempts to configure the binding to play the none roleS@APBi ndi ng. set Rol es.

10.1.1.2 SOAP Handlers

The handler chain for a SOAP binding is configured as deedrib sectiod 8.2]11. The handler chain may
contain handlers of the following types:

Logical Logical handlers are handlers that implemgatax. xn . ws. handl er . Logi cal Handl er ei-
ther directly or indirectly. Logical handlers have acceasshe content of the SOAP body via the
logical message context.

SOAP SOAP handlers are handlers that implemjemtax. xm . ws. handl er. soap. SOAPHandl er .

Mime attachments specified by thaevax. xni . ws. bi ndi ng. att achment s. i nboundandj avax. xm -
.ws. bi ndi ng. att achment s. out bound properties defined in theessageCont ext can be modif-
ied in logical handlers. A SOAP message with the attachmspesified using the properties is generated
before invoking the firsBOAPHandl er . Any changes to the two properites in consideration abowvhén
MessageCont ext after invoking the firstSOAPHandl er are ignored. The&OAPHandl er however may
change the properties in tihiessageCont ext

Use ofj avax. xnm . ws. bi ndi ng. at t achnent s. out bound property in Dispatch

* When usingDi spat ch in SOAP / HTTP binding in payload mode, attachments spetifi©ing the
javax. xm . ws. bi ndi ng. at t achment s. out bound property will be included as mime attach-
ments in the message.

* When usingDi spat ch in SOAP / HTTP binding in message mode, jtevax. xm . ws. bi ndi ng-
. attachnent s. out bound property will be ignored as the message type already pre\adeay to
specify attachments.

& Conformance (Incompatible handlerddn implementation MUST thromébSer vi ceExcept i onwhen,
at the time a binding provider is created, the handler cheturned by the configuredandl er Resol ver
contains an incompatible handler.

& Conformance (Incompatible handlerdjnplementations MUST throw\abSer vi ceExcept i onwhen
attempting to configure an incompatible handler ushgdi ng. set Handl er Chai n.

{ Conformance (Logical handler acces#n implementation MUST allow access to the contents of the
SOAP body via a logical message context.

116 JAX-WS 2.0 April 19, 2006

10.2. Processing Model

10.1.1.3 SOAP Headers

The SOAP headers understood by a handler are obtained bsiggttHeader s method ofSOAPHandl er .

10.1.2 Deployment Model

JAX-WS defines no standard deployment model for handletssh@ model is provided by JSR 109[14]
“Implementing Enterprise Web Services”.

10.2 Processing Model

The SOAP binding implements the general handler framewookgssing model described in sectfon] 9.3
but extends it to include SOAP specific processing as dasdiin the following subsections.

10.2.1 SOAP nust Under st and Processing

The SOAP protocol binding performs the following additibpeocessing on inbound SOAP messages prior
to the start of normal handler invocation processing (seisd#9.3.2). Refer to the SOAP specificatior[?, 3,
4] for a normative description of the SOAP processing moilkis section is not intended to supercede any
requirement stated within the SOAP specification, butemtb outline how the configuration information
described above is combined to satisfy the SOAP requirenent

1. Obtain the set of SOAP roles for the current binding instanThis is returned bgOAPBI ndi ng-
. get Rol es.

2. Obtain the set dgflandl! er s deployed on the current binding instance. This is obtaiee8i ndi ng-
. get Handl er Chai n.

3. Identify the set of header qualified names (QNames) timbinding instance understands. This is
the set of all headepNanes that satisfy at least one of the following conditions:

(a) that are mapped to method parameters in the service iahdterface;
(b) are members d8OAPHandl er . get Header s() for eachSOAPHandl er in the set obtained in
stefd2;

(c) are directly supported by the binding instance.

4. Identify the set of must understand headers in the inboweskage that are targeted at this node. This
is the set of all headers withraist Under st and attribute whose value is or t r ue and anact or
orr ol e attribute whose value is in the set obtained in §lep 1.

5. For each header in the set obtained in §lep 4, the headedéstood if its QName is in the set
identified in stefB.

6. If every header in the set obtained in diép 4 is understibed, the node understands how to process
the message. Otherwise the node does not understand hoectspithe message.

7. If the node does not understand how to process the megshageaeither handlers nor the endpoint
are invoked and instead the binding generates a SOAP mustsiadd exception. Subsequent actions
depend on whether the message exchange pattern (MEP) iequsecs a response to the message
currently being processed or not:

April 19, 2006 JAX-WS 2.0 117

Chapter 10. SOAP Binding

ResponseThe message direction is reversed and the binding disgatbeeSOAP must understand
exception (see sectign 10.P.2).
No response The binding dispatches the SOAP must understand exces@ansgection10.2.2).

10.2.2 Exception Handling

The following subsections describe SOAP specific requinets for handling exceptions thrown by handlers
and service endpoint implementations.

10.2.2.1 Handler Exceptions

A binding is responsible for catching runtime exception®wn by handlers and following the processing
model described in sectign 9.B.2. A binding is responsibtecbnverting the exception to a fault message
subject to further handler processing if the following erid are met:
1. A handler throws &r ot ocol Except i on from handl eMessage
2. The MEP in use includes a response to the message beirespeac
3. The current message is not already a fault message (théehamght have undertaken the work prior
to throwing the exception).

If the above criteria are met then the exception is convadedSOAP fault message as follows:

* If the exception is an instance &0OAPFaul t Except i on then the fields of the contained SAAJ
SOAPFaul t are serialized to a new SOAP fault message, see sécfio?1.d2he current message
is replaced by the new SOAP fault message.

* If the exception is of any other type then a new SOAP faultsags is created to reflect a server class
of error for SOAP 1.1]2] or a receiver class of error for SOAB3].

« Handler processing is resumed as described in s€cfiad. 9.3.

If the criteria for converting the exception to a fault megsaubject to further handler processing are not
met then the exception is handled as follows depending ooutirent message direction:

Outbound A new SOAP fault message is created to reflect a server clasgamffor SOAP 1.1]2] or a
receiver class of error for SOAP 1.2[3] and the message |mtlibed.

Inbound The exception is passed to the binding provider.

10.2.2.2 Service Endpoint Exceptions

Service endpoints can throw service specific exceptionsuptime exceptions. In both cases they can
provide protocol specific information using the cause na@i$m, see sectidn 6.4.1.

A server side implementation of the SOAP binding is resgmador catching exceptions thrown by a service
endpoint implementation and, if the message exchangepattase includes a response to the message that
caused the exception, converting such exceptions to SOAPessages and invoking thandl eFaul t
method on handlers for the fault message as described inrsECB.2.

SectiorZI0.Z. 213 describes the rules for mapping an exxefia SOAP fault.

118 JAX-WS 2.0 April 19, 2006

10.3. SOAP Message Context

10.2.2.3 Mapping Exceptions to SOAP Faults

When mapping an exception to a SOAP fault, the fields of th# faessage are populated according to the
following rules of precedence:

f aul t code (Subcode in SOAP 1.2 Code set toenv: Recei ver)

1. SOAPFaul t Excepti on. get Faul t (). get Faul t CodeAsQNanme() !
2. env: Server (Subcode omitted for SOAP 1.2).

faul t string (Reason/ Text

1. SOAPFaul t Excepti on. get Faul t (). get Faul t String()?!
2. Excepti on. get Message()
3. Exception.toString()

e faul tactor (Rol e in SOAP 1.2)

1. SOAPFaul t Excepti on. get Faul t (). get Faul t Act or () !
2. Empty

detail (Detail in SOAP 1.2)

1. Serialized service specific exception ($&epperExceptioget Faul t 1 nf o() in sectiofZb)
2. SOAPFaul t Exception. get Faul t (). getDetail ()?!

10.3 SOAP Message Context

SOAP handlers are passedsa@APMessageCont ext when invoked. SOAPMessageCont ext extends
MessageCont ext with methods to obtain and modify the SOAP message payload.

10.4 SOAP Transport and Transfer Bindings

SOAP|[2,[4] can be bound to multiple transport or transfetquols. This section describes requirements
pertaining to the supported protocols for use with SOAP.

10.4.1 HTTP

The SOAP 1.1 HTTP binding is identified by the URLt p: / / schenmas. xnl soap. or g/ wsdl / soap/ ht t p,
which is also the value of the constgrtvax. xnl . ws. soap. SOAPBi ndi ng. SOAP11HTTPBI NDI NG.

{ Conformance (SOAP 1.1 HTTP Binding Supporfin implementation MUST support the HTTP bind-
ing of SOAP 1.1[2] and SOAP With Attachmenis|31] as cladfiey the WS-I Basic Profile[17], WS-I
Simple SOAP Binding Profile[26] and WS- Attachment Pre[d1].

LIf the exception is &OAPFaul t Except i on or has a cause that isSOAPFaul t Except i on.

April 19, 2006 JAX-WS 2.0 119

Chapter 10. SOAP Binding

The SOAP 1.2 HTTP binding is identified by the URLt p: / / www. w3. or g/ 2003/ 05/ soap/ bi ndi ngs/ HTTP/ ,
which is also the value of the constdrstvax. xnm . ws. soap. SOAPBi ndi ng. SOAP12HTTP_BI NDI NG,

< Conformance (SOAP 1.2 HTTP Binding Supporfin implementation MUST support the HTTP bind-
ing of SOAP 1.2]4].

10.4.1.1 MTOM
{> Conformance (SOAP MTOM Supportfn implementation MUST support MTONI24]

SOAPBI ndi ng defines a property (in the JavaBeans sense) ciifié@Enabl ed that can be used to control
the use of MTOM. Thaegyet MTOVEnabl ed method is used to query the current value of the property. The
set MTOVEnabl ed method is used to change the value of the property so as téeemablisable the use of
MTOM.

{ Conformance (Semantics of MTOM enabledithen MTOM is enabled, a receiver MUST accept both
non-optimized and optimized messages, and a sender MAY aeraptimized message, hon-optimized
messages being also acceptable.

The heuristics used by a sender to determine whether to tisgizgition or not are implementation-specific.

< Conformance (MTOM support)PredefinedsOAPBi ndi ng instances MUST support enabling/disabling
MTOM support using theet MTOVenabl ed method.

< Conformance (SOAP bindings with MTOM disabled)he bindings corresponding to the following IDs:

j avax. xm . ws. soap. SOAPBI ndi ng. SOAP11HTTPBI NDI NG

j avax. xm . ws. soap. SOCAPBIi ndi ng. SOAP12HTTPBI NDI NG

MUST have MTOM disabled by default.
For convenience, this specification defines two additidmading identifiers for SOAP 1.1 and SOAP 1.2
over HTTP with MTOM enabled.

The URL of the formerisitt p: // schemas. xm soap. or g/ wsdl / soap/ ht t p?nt omet r ue and its predef-
ined constant avax. xm . ws. soap. SOAPBi ndi ng. SOAP11HTTP_MIOMBI NDI NG

The URL of the latter it t p: / / www. w3. or g/ 2003/ 05/ soap/ bi ndi ngs/ HTTP/ ?nt omet r ue and its
predefined constaritavax. xm . ws. soap. SOAPBi ndi ng. SOAP12HTTP_MIOMBI NDI NG,

{ Conformance (SOAP bindings with MTOM enabledhe bindings corresponding to the following IDs:

j avax. xm . ws. soap. SCAPBi ndi ng. SOAP11HTTP_MIOMLBI NDI NG

j avax. xm . ws. soap. SOAPBI ndi ng. SOAP12HTTP_MIOMLBI NDI NG

MUST have MTOM enabled by default.

{ Conformance (MTOM on Other SOAP Bindingspther bindings that exter&DAPBi ndi ng MAY NOT
support changing the value of tMEOVENnabl ed property. In this case, if an application attempts to change
its value, an implementation MUST throw/&bSer vi ceExcept i on.

1JAX-WS inherits the JAXB support for the SOAP MTOM]24]/X (%] mechanism for optimizing transmission of binary data
types, see sectidn2.4.

120 JAX-WS 2.0 April 19, 2006

10.4. SOAP Transport and Transfer Bindings

10.4.1.2 One-way Operations

HTTP interactions are request-response in nature. Wheg &8I TP as the transfer protocol for a one-way
SOAP message, implementations wait for the HTTP resporeetaough there is no SOAP message in the
HTTP response entity body.

< Conformance (One-way operationd)lhen invoking one-way operations, an implementation o0& P-
/HTTP binding MUST block until the HTTP response is receiegn error occurs.

Note that completion of the HTTP request simply means thatrdnsmission of the request is complete,
not that the request was accepted or processed.

10.4.1.3 Security

Section[£ZT]1 defines two standard context properfiesax. xm . ws. securi ty. aut h. user name
andj avax. xm . ws. security. aut h. passwor d) that may be used to configure authentication infor-
mation.

< Conformance (HTTP basic authentication suppofrimplementation of the SOAP/HTTP binding MUST
support HTTP basic authentication.

& Conformance (Authentication propertieg): client side implementation MUST support use of the the
standard propertigsavax. xm . ws. securi ty. aut h. user name andj avax. xm . ws. security. aut h-
. passwor d to configure HTTP basic authentication.

10.4.1.4 Session Management

Section[£.Z.T]1 defines a standard context propé¢riyx. xm . ws. sessi on. mai nt ai n) that may be
used to control whether a client side runtime will join a s@sénitiated by a service.

A SOAP/HTTP binding implementation can use three HTTP meishas for session management:
Cookies To initiate a session a service includes a cookie in a messagdo a client. The client stores the
cookie and returns it in subsequest messages to the service.

URL rewriting To initiate a session a service directs a client to a new URIsfibsequent interactions.
The new URL contains an encoded session identifier.

SSL The SSL session ID is used to track a session.
R1120 in WS-I Basic Profile 1.L[17] allows a service to useTFTcookies. However, R1121 recommends
that a service should not rely on use of cookies for state gemant.

& Conformance (URL rewriting supportAn implementation MUST support use of HTTP URL rewriting
for state management.

¢ Conformance (Cookie supportfn implementation SHOULD support use of HTTP cookies fotesta
management.

{ Conformance (SSL session suppomyn implementation MAY support use of SSL session based state
management.

April 19, 2006 JAX-WS 2.0 121

Chapter 10. SOAP Binding

122 JAX-WS 2.0 April 19, 2006

Chapter 11

HTTP Binding

This chapter describes the JAX-WS XML/HTTP binding. The S XML/HTTP binding provides
“raw” XML over HTTP messaging capabilities as used in manyb\Wervices today.

11.1 Configuration

The XML/HTTP binding is identified by the URbt t p: / / wwv. w3. or g/ 2004/ 08/ wsdl / ht t p, which
is also the value of the constgrdvax. xm . ws. htt p. HTTPBi ndi ng. HTTP_BI NDI NG.

& Conformance (XML/HTTP Binding Support)An implementation MUST support the XML/HTTP bind-
ing.

An XML/HTTP binding instance allows HTTP-specific configuion in addition to that described in section
[B2. The additional information can be configured eith@gpammatically or using deployment metadata.
The following subsections describe each form of configarat

11.1.1 Programmatic Configuration

JAX-WS only defines APIs for programmatic configuration adient side XML/HTTP bindings — server
side bindings are expected to be configured using deploymetadata.

11.1.1.1 HTTP Handlers

The handler chain for an XML/HTTP binding is configured asatéed in section 3. 2.1. The handler chain
may contain handlers of the following types:

Logical Logical handlers are handlers that implemgatax. xm . ws. handl er . Logi cal Handl er ei-
ther directly or indirectly. Logical handlers have accasshie entire XML message via the logical
message context.

Use ofj avax. xnmi . ws. bi ndi ng. at t achnent s. out bound property in Dispatch

* When usingDi spat ch in XML / HTTP binding in payload mode, attachments specifiesing the
j avax. xml . ws. bi ndi ng. at t achment s. out bound property will be included as mime attach-
ments to the message.

April 19, 2006 JAX-WS 2.0 123

Chapter 11. HTTP Binding

* When usingDi spat ch in XML / HTTP binding in message mode, thavax. xm . ws. bi ndi ng-
. at tachnment s. out bound property will be ignored.Di spat ch of type Dat aSour ce should be
used to send mime attachments for the XML / HTTP binding insage mode.

& Conformance (Incompatible handler#n implementation MUST thromébSer vi ceExcept i on when,
at the time a binding provider is created, the handler cheturned by the configuredandl er Resol ver
contains an incompatible handler.

{ Conformance (Incompatible handlerdjnplementations MUST throw\aébSer vi ceExcept i onwhen
attempting to configure an incompatible handler ushgdi ng. set Handl er Chai n.

{ Conformance (Logical handler accesgn implementation MUST allow access to the entire XML mes-
sage via a logical message context.

11.1.2 Deployment Model
JAX-WS defines no standard deployment model for handletssh@ model is provided by JSR 109[14]

“Implementing Enterprise Web Services”.

11.2 Processing Model

The XML/HTTP binding implements the general handler frarogprocessing model described in section
. d.
11.2.1 Exception Handling

The following subsections describe HTTP specific requésta for handling exceptions thrown by handlers
and service endpoint implementations.

11.2.1.1 Handler Exceptions

A binding is responsible for catching runtime exception®wn by handlers and following the processing
model described in sectign_9.B.2. A binding is responsibtecbnverting the exception to a fault message
subject to further handler processing if the following eriid are met:

1. A handler throws &r ot ocol Except i on from handl eMessage
2. The MEP in use includes a response to the message beirespeac

3. The current message is not already a fault message (thiehamght have undertaken the work prior
to throwing the exception).

If the above criteria are met then the exception is convededHTTP response message as follows:

« If the exception is an instance BT TPExcept i on then the HTTP response code is set according to
the value of thest at usCode property. Any current XML message content is removed.

124 JAX-WS 2.0 April 19, 2006

11.3. HTTP Support

* If the exception is of any other type then the HTTP statusdedet to 500 to reflect a server class of
error and any current XML message content is removed.

« Handler processing is resumed as described in s€cfiad. 9.3.

If the criteria for converting the exception to a fault megsaubject to further handler processing are not
met then the exception is handled as follows depending ooutirent message direction:

Outbound The HTTP status code is set to 500 to reflect a server classavf any current XML message
content is removed and the message is dispatched.

Inbound The exception is passed to the binding provider.

11.2.1.2 Service Endpoint Exceptions

Service endpoints can throw service specific exceptionsuptime exceptions. In both cases they can
provide protocol specific information using the cause na@i$m, see sectidn 6.4.1.

A server side implementation of the XML/HTTP binding is respible for catching exceptions thrown by
a service endpoint implementation and, if the message agehpattern in use includes a response to the
message that caused the exception, converting such excepti HTTP response messages and invoking
thehandl eFaul t method on handlers for the response message as descrildianS.3P.

SectioIT.Z.T13 describes the rules for mapping an exxefia HTTP status code.
11.2.1.3 Mapping Exceptions to a HTTP Status Code

When mapping an exception to a HTTP status code, the statiesafdhe HT TP fault message is populated
according to the following rules of precedence:

1. HTTPExcept i on. get St at usCode() !

2. 500.

11.3 HTTP Support

11.3.1 One-way Operations

HTTP interactions are request-response in nature. Whehfasene-way messages, implementations wait
for the HTTP response even though there is no XML messageiRTITP response entity body.

< Conformance (One-way operationd)hen invoking one-way operations, an implementation o). -
/HTTP binding MUST block until the HTTP response is receiegn error occurs.

Note that completion of the HTTP request simply means thatridnsmission of the request is complete,
not that the request was accepted or processed.

LIf the exception is &TTPExcept i on or has a cause that i TPExcept i on.

April 19, 2006 JAX-WS 2.0 125

Chapter 11. HTTP Binding

11.3.2 Security

Section[£ZT]1 defines two standard context properfiesax. xm . ws. securi ty. aut h. user name
andj avax. xm . ws. security. aut h. passwor d) that may be used to configure authentication infor-
mation.

& Conformance (HTTP basic authentication suppofgimplementation of the XML/HTTP binding MUST
support HTTP basic authentication.

< Conformance (Authentication propertied): client side implementation MUST support use of the the
standard propertigsavax. xml . ws. securi ty. aut h. user nane andj avax. xml . ws. security. aut h-
. passwor d to configure HTTP basic authentication.

11.3.3 Session Management

Section[Z.Z.T]1 defines a standard context prop¢riygx. xm . ws. sessi on. mai nt ai n) that may be
used to control whether a client side runtime will join a s@msénitiated by a service.

A XML/HTTP binding implementation can use three HTTP medbans for session management:
Cookies To initiate a session a service includes a cookie in a messaydo a client. The client stores the
cokkie and returns it in subsequest messages to the service.

URL rewriting To initiate a session a service directs a client to a new URIsédsequent interactions.
The new URL contains an encoded session identifier.

SSL The SSL session ID is used to track a session.

& Conformance (URL rewriting supportAn implementation MUST support use of HTTP URL rewriting
for state management.

¢ Conformance (Cookie supportfin implementation SHOULD support use of HTTP cookies fotesta
management.

{ Conformance (SSL session suppomyn implementation MAY support use of SSL session based state
management.

126 JAX-WS 2.0 April 19, 2006

Appendix A

Conformance Requirements

D1 WSDL 1.1suppdrt 9
22 Customizationrequited 9
2.3 Annotations on generated clabses 9
2.4 Definitions mappilg et 9
2.5 WSDI and XMI Schema import directiVes 10
2.6 _Optional WSDIL eXtensions o v v vt e e e e 10
R7 SELNAMIOY o oo e e 10
2.8 javax jws WehServicerequireH 10
2.9 Method nAMING v ot e e e 11
R10javax. jws. WebMethodrequirel 11
[2.11 Transmission primitive SUDQOM o o e e 11
12 Usingiavax. jws. OneVaY 11
[2.13 Usingiavax. jws. SOAPBIiNding . . « « . vt e e e 11
.14 Usingiavax. jws VbParam o oot 11
[2.15 Usingiavax. jws WebResultl 11
[2.16 Non-wrapped parameter Namingo oe e e e e e 12
[2.17 Default mapping male 12
[2.18 Disabling Wrapper St¥le 13
[2.19 Wrapped parameter naming e e e e 13
220 Parameternameclhsh 13
[2.21_Using avax. xm . ws. RequesStWapperlo 13
[2.22_Using avax. xm . ws. ResponseWapperl 13
223 Useotolder 16
[2.24_Asynchronous mapping requlred 16

April 19, 2006 JAX-WS 2.0 127

Appendix A. Conformance Requirements

[2.25 Asynchronous mapping opfion e 16
[2.26 Asynchronous method namling ot 17
[2.27 Asynchronous parameter namhing oot e 17
.28 Failed methadinvocation 17
[2.29 Response bean namhingo i e 17
[2.30 Asynchronous faultreporting e e 18
[2.31 Asychronous faultcalse 18
2.32 JAXBclass mappingt e 20
.33 JAXB customization USe 20
.34 JAXB customization clash e 20
[2.35 javax. xol . ws. WehFault requirell 21
236 EXception DAMING o o e e e e 21
.37 Faultequivalenke 21
238 Faultequivalenleot 21
.39 Required WSDL eXtensidns o oo 23
[2.40 Unbound message PAMSo e 23
.41 Duplicate headersinbinding 23
[2.42 Duplicate headers inmesdageo 24
[2.43 Use of MIME typeinformatidn oo oo 24
.44 MIME type mismatdh 26
[2.45 MIME partidentificationo 26
.46 Servicesuperclassrequitedo, 26
.47 Serviceclassnaming 26
.48 j avax xnl . ws. WebServicedient required 26
a0l 26
=10 26
51 Failed getPort Methbd oo 27
[2.52 j avax. xnml . ws WebEndpoint requirell L. 27
Bl WSDL 1.1suppdrto 29
B2 _Standard annotatidnsottt 29
B3 Javaidentifiermappihg 29
B.4 Method name disambiguafion 29
B.5 Package name mapgingot i 30
3.6 WSDI and XMI Schema import directiVes 30

128 JAX-WS 2.0 April 19, 2006

B8 portType nAMINg o o oot e e 31
B9 Inheritance flattenihg 31
.10 Inherited interface mappIng 31
B.11 Operationnamihg 31
B12 One-waymappihg 32
B.13 One-way mapping errbrs e e e 32
14 Parameter classificaion 35
B.15 Parameternamingo 35
B16 Resultnamihg o ot 35
[3.17 Header mapping of parameters and résults 35
[3.18 Default wrapper bean namest e e 36
[3.19 Default wrapper bean packBgeo e 36
320 Wrapper element DAMES 36
B21 Wrapperbeannameclhsh e 36
B.22 NullValuesinrpelliterhl 39
B23 Exceptionnamihg o 39
B24 Faulthean namecliish oo i 40
B25 Bindingselectidn 40
.26 SOAPbinding suppbrt 44
B.27 SOAP binding style requifed e 45
B28 Servicecreatibn 45
329 Partselectibn 45
B30 Porthindidg 45
41 Service cCOMPIEIENESS o o ot e e e 49
b2 Service Creation Faillire 50
M3 Useof EXeCUtDr o oo oo 52
MA Default EXECUIDr . . . o o o o e e e e 52
45 Message contextdecouplingo 53
4.6 Requiredi ndi ngProvider PrOPErtiEso 54
4.7 _OptionalBi ndi ngProvider propertiels 54
4.8 Additional context properties 54
4.9 Asynchronous response comtext e 55
M0 ProxXy SUDROMt . . . o vt o o e e 55

April 19, 2006 JAX-WS 2.0 129

Appendix A. Conformance Requirements

411 Implementin®i ndingProviderl ot 55
KU12 Service. getPort failUrg o v oo e 55
413 Remote EXCEPHANS o o v v e e e e e e e e 56
l4.14 Exceptions During Handler Proceskingo oo o 56
415 Other EXCeptionS o oo 56
16 Dispatchsuppolto o 56
KU17 Failleddi spat Ch invoke v oo o 58
l4.18 Faileddi spatch. invokeAsynd o i o 58
14.19 FailedDi spatch. i nvokeneWAM oo e 58
14.20 Reporting asynchronouS EOrS v v v v v v e e e e 59
U.21 Marshalling failufeo e 59
U22 Useofthe Catalbg oo ot e 61
5.1 Provider support requitled 63
5.2 Provider default CONSIIUGIOr . . .« o o v v e e e e e 63
.3 _Providerimplementatibn 63
5.4 _WebServiceProvider annotalion 63
5.5__Endpoint publish(String address, Object implemertéehodl 66
5.6 Default Endpoint BIndifg v ot e e e e e 66
Bz _Other BIndindS o o oot e 66
B.8 Publishing over HTTIP o o o e e e e e e e e e 67
5.9 WSDL PUblishifg o . o oo 67
[5.10 Checkingubl i ShENdpoi nf PEIMISSIAN o« v oottt e e e e e 68
.11 Required Metadata TYPES o o v v e e e e e 68
B12 Unknown Metaddta 68
513 USe Of EXECUIOr o v ot o e e e e 72
B4 Default Executbr 73
6.1 _Read-only handler Chalins o v vt 75
6.2 Concretg avax xm . ws spi. Provider requirel 75
l6.3 _Provider createAndPublishEndpoint Method 76
6.4 Concret¢ avax. xnl . ws. spi. ServiceDel egaterequirell 77
I6.5__Protocol specific fault generation e 77
6.6 Protocol specific fault consumption L 78
6.7 _One-wayoperatigns 78
[Z.1__Correctness of annotatibns 79

130 JAX-WS 2.0 April 19, 2006

[2.3 WebServiceProvider and WehSetvice e 82
- B . . e e e e e e e 85
[8.1 Standard binding declaratibns 89
8.2 _Binding language extensibility 89
B3 Multiple binding filek 92
9.1 _Handler framework SUDPOIt oo 101
.2 logicalhandler suppbrt 102
9.3 _Other handler SUPPIOIt o o o v e o e 102
0.4 Incompatible handIrs 103
9.5 Incompatible handlers 103
9.6 Handler chainsnapshot 104
0.7 HandlerChain annotation 105
9.8 Handler resolver for a HandlerChain annotationo .o oot 105
l0.o Binding handler manipulation 106
910 Handler initializatidn 107
11 Handlerdestructbn 107
912 Invokingclosd 109
[0.13 Orderotloseinvocations 109
[9.14 Message context property SA0PEt i i e e 110
101 SOAPrequired roles oo 115
102 SOAPrequired roles 116
[10.3 Default role visibility 116
[10.4 Defaultrole persisteice oo 116
05 Noneroleertbr e 116
[10.6 Incompatible handldrs 116
[10.7 Incompatible handldrs 116
[10.8 I ogical handler BCCESS v o vt 116
[10.9 SOAP 1.1 HTTP Binding SUPMOM . .« « o v v e e e e e e e e 119
[10.10SOAP 1.2 HTTP Binding SUPHOM o v oo v o et e e e e e e e 120
[10.11SOAP MIOM SUpRAMt o o e e e e e e 120
[10.12Semantics of MTOM enabled 120
MO I3MTOM SSUDROIt o o o e e e 120
[10.14SOAP hindings with MTOM disabled 120

April 19, 2006 JAX-WS 2.0 131

Appendix A. Conformance Requirements

[10.15SOAP bindings with MTOM enabled oo 120
[10.16MTOM on Other SOAP BINAINGS . . + « o v v o v e e e e e e e 120
[10.170ne-way aperatidns 121
[10.18HTTP basic authentication SUPDOIt o v v v e e e e e e e 121
[10.19Authentication propertles 121
[10.20URL rewriting SUPPArt o o e 121
[l0.21Caokie sUppdIt 121
[10.22SSI Session SUPPOIt o o ot 121
11 XMIHTTPBinding Suppdrt o o o 123
[11.2 Incompatible handldrs 124
[11.3 Incompatible hANIBIS ot e e 124
[11.4 Logical handler acCdss oot o 124
[11.5 One-way operatidns ot i 125
[11.6 HTTP basic authentication SUPPOFt oot e o 126
[11.7 Authenfication propertles 126
1.8 URL rewriting SUPRArt o ot 126
[11.9 Cookie SUPRAIt o o 126
[11.10SSL sessSion SUPBOrt . . .« . o o o e e 126

132 JAX-WS 2.0 April 19, 2006

Bibliography

[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and EvesMatxtensible Markup Language
(XML) 1.0 (Second Edition). Recommendation, W3C, Octol@0®@ See
http://mww.w3.0rg/TR/2000/REC-xmI-20001006.

[2] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layiidnah Mendelsohn, Henrik Nielsen,
Satish Thatte, and Dave Winer. Simple Object Access Prbo(8¢2AP) 1.1. Note, W3C, May 2000.
See http://www.w3.0rg/TR/SOAP/.

[3] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-GasgMoreau, and Henrik Frystyk Nielsen.
SOAP Version 1.2 Part 1: Messaging Framework. Recommenrgat3C, June 2003. See
http://www.w3.0rg/TR/2003/REC-soapl2-part1-20030624

[4] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-dasgMoreau, and Henrik Frystyk Nielsen.
SOAP Version 1.2 Part 2: Adjuncts. Recommendation, W3Ce A00)3. See
http://www.w3.0rg/TR/2003/REC-soapl2-part2-20030624

[5] Erik Christensen, Francisco Curbera, Greg Mereditll, Sanjiva Weerawarana. Web Services
Description Language (WSDL) 1.1. Note, W3C, March 2001. See
http://www.w3.0rg/TR/2001/NOTE-wsdI-20010315.

[6] Rahul Sharma. The Java API for XML Based RPC (JAX-RPC) 18R, JCP, June 2002. See
http://jcp.org/en/jsr/detail?id=101.

[7] Roberto Chinnici. The Java API for XML Based RPC (JAX-RFCL. Maintenance JSR, JCP,
August 2003. See http://jcp.org/en/jsr/detail ?id=101.

[8] Keith Ballinger, David Ehnebuske, Martin Gudgin, Marlottingham, and Prasad Yendluri. Basic
Profile Version 1.0. Final Material, WS-I, April 2004. See
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-08.html.

[9] Joseph Fialli and Sekhar Vajjhala. The Java Architecfor XML Binding (JAXB). JSR, JCP,
January 2003. See http://jcp.org/en/jsr/detail?id=31.

[10] Joseph Fialli and Sekhar Vajjhala. The Java Architecfar XML Binding (JAXB) 2.0. JSR, JCP,
August 2003. See http://jcp.org/en/jsr/detail ?id=222.

[11] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moydatfrey Schlimmer, and Sanjiva
Weerawarana. Web Services Description Language (WSDlsie2.0 Part 1: Core Language.
Working Draft, W3C, August 2004. See http://www.w3.org/2B04/WD-wsdl20-20040803.

[12] Joshua Bloch. A Metadata Facility for the Java Programgrhanguage. JSR, JCP, August 2003. See
http://jcp.org/en/jsr/detail?id=175.

April 19, 2006 JAX-WS 2.0 133

BIBLIOGRAPHY

[13] Jim Trezzo. Web Services Metadata for the Java Platfd®iR, JCP, August 2003. See
http://jcp.org/en/jsr/detail ?id=181.

[14] Jim Knutson and Heather Kreger. Web Services for J2BR, JCP, September 2002. See
http://jcp.org/en/jsr/detail ?id=109.

[15] Nataraj Nagaratnam. Web Services Message Securitg. AR, JCP, April 2002. See
http://jcp.org/en/jsr/detail ?id=183.

[16] Farrukh Najmi. Java API for XML Registries 1.0 (JAXR)SR, JCP, June 2002. See
http://www.jcp.org/en/jsr/detail ?id=93.

[17] Keith Ballinger, David Ehnebuske, Chris Ferris, MarGudgin, Canyang Kevin Liu, Mark
Nottingham, Jorgen Thelin, and Prasad Yendluri. Basic rufirsion 1.1. Final Material, WS-,
August 2004. See http://www.ws-i.org/Profiles/BasicReefi. 1-2004-08-24.html.

[18] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 239&iform Resource Identifiers (URI):
Generic Syntax. RFC, IETF, March 1997. See http://wwwaegfrfc/rfc2396.txt.

[19] S. Bradner. RFC 2119: Keywords for use in RFCs to Indiddtquirement Levels. RFC, IETF,
March 1997. See http://www.ietf.org/rfc/rfc2119.txt.

[20] John Cowan and Richard Tobin. XML Information Set. Reooendation, W3C, October 2001. See
http://mww.w3.0rg/TR/2001/REC-xml-infoset-20011024/

[21] Henry S. Thompson, David Beech, Murray Maloney, and INi@ndelsohn. XML Schema Part 1:
Structures. Recommendation, W3C, May 2001. See
http://iwww.w3.0rg/TR/2001/REC-xmlIschema-1-20010502/

[22] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Dgtes. Recommendation, W3C, May
2001. See http://wvww.w3.0rg/TR/2001/REC-xmischemad@iD502/.

[23] James Gosling, Bill Joy, Guy Steele, and Gilad Brach#e Java Language Specification - second
edition. Book, Sun Microsystems, Inc, 2000.
http://java.sun.com/docs/books/jls/secaedition/html/j.title.doc.html.

[24] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, anerv¢ Ruellan. SOAP Message
Transmission Optimization Mechanism. RecommendationCWanuary 2005.
http://mww.w3.0org/TR/soap12-mtom/.

[25] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, anehv¢ Ruellan. XML-binary Optimized
Packaging. Recommendation, W3C, January 2005. http://wa&wrg/TR/xop10/.

[26] Mark Nottingham. Simple SOAP Binding Profile Versio®1Working Group Draft, WS-I, August
2004. See http://lwww.ws-i.org/Profiles/SimpleSoapBigdHrofile-1.0-2004-08-24.html.

[27] Chris Ferris, Anish Karmarkar, and Canyang Kevin Liutaghments Profile Version 1.0. Final
Material, WS-I, August 2004. See
http://www.ws-i.org/Profiles/AttachmentsProfile-1.062-08-24.html.

[28] Norm Walsh. XML Catalogs 1.1. OASIS Committee Spectima OASIS, July 2005. See
http://www.oasis-open.org/committees/download.php4il /xml-catalogs.html.

[29] Rajiv Mordani. Common Annotations for the Java PlatiolJSR, JCP, July 2005. See
http://jcp.org/en/jsr/detail ?id=250.

134 JAX-WS 2.0 April 19, 2006

BIBLIOGRAPHY

[30] Bill Shannon. Java Platform Enterprise Edition 5 Sfieation. JSR, JCP, August 2005. See
http://jcp.org/en/jsr/detail ?id=244.

[31] John Barton, Satish Thatte, and Henrik Frystyk Nielse@AP Messages With Attachments. Note,
W3C, December 2000. http://mww.w3.0rg/TR/SOAP-attachtse

April 19, 2006 JAX-WS 2.0 135

	1 Introduction
	1.1 Goals
	1.2 Non-Goals
	1.3 Requirements
	1.3.1 Relationship To JAXB
	1.3.2 Standardized WSDL Mapping
	1.3.3 Customizable WSDL Mapping
	1.3.4 Standardized Protocol Bindings
	1.3.5 Standardized Transport Bindings
	1.3.6 Standardized Handler Framework
	1.3.7 Versioning and Evolution
	1.3.8 Standardized Synchronous and Asynchronous Invocation
	1.3.9 Session Management

	1.4 Use Cases
	1.4.1 Handler Framework

	1.5 Conventions
	1.6 Expert Group Members
	1.7 Acknowledgements

	2 WSDL 1.1 to Java Mapping
	2.1 Definitions
	2.1.1 Extensibility

	2.2 Port Type
	2.3 Operation
	2.3.1 Message and Part
	2.3.2 Parameter Order and Return Type
	2.3.3 Holder Class
	2.3.4 Asynchrony

	2.4 Types
	2.5 Fault
	2.5.1 Example

	2.6 Binding
	2.6.1 General Considerations
	2.6.2 SOAP Binding
	2.6.3 MIME Binding

	2.7 Service and Port
	2.7.1 Example

	2.8 XML Names
	2.8.1 Name Collisions

	3 Java to WSDL 1.1 Mapping
	3.1 Java Names
	3.1.1 Name Collisions

	3.2 Package
	3.3 Class
	3.4 Interface
	3.4.1 Inheritance

	3.5 Method
	3.5.1 One Way Operations

	3.6 Method Parameters and Return Type
	3.6.1 Parameter and Return Type Classification
	3.6.2 Use of JAXB

	3.7 Service Specific Exception
	3.8 Bindings
	3.8.1 Interface
	3.8.2 Method and Parameters

	3.9 Generics
	3.10 SOAP HTTP Binding
	3.10.1 Interface
	3.10.2 Method and Parameters

	3.11 Service and Ports

	4 Client APIs
	4.1 javax.xml.ws.Service
	4.1.1 Service Usage
	4.1.2 Provider and Service Delegate
	4.1.3 Handler Resolver
	4.1.4 Executor

	4.2 javax.xml.ws.BindingProvider
	4.2.1 Configuration
	4.2.2 Asynchronous Operations
	4.2.3 Proxies
	4.2.4 Exceptions

	4.3 javax.xml.ws.Dispatch
	4.3.1 Configuration
	4.3.2 Operation Invocation
	4.3.3 Asynchronous Response
	4.3.4 Using JAXB
	4.3.5 Examples

	4.4 Catalog Facility

	5 Service APIs
	5.1 javax.xml.ws.Provider
	5.1.1 Invocation
	5.1.2 Configuration
	5.1.3 Examples

	5.2 javax.xml.ws.Endpoint
	5.2.1 Endpoint Usage
	5.2.2 Publishing
	5.2.3 Publishing Permission
	5.2.4 Endpoint Metadata
	5.2.5 Determining the Contract for an Endpoint
	5.2.6 Endpoint Properties
	5.2.7 Executor

	5.3 javax.xml.ws.WebServiceContext
	5.3.1 MessageContext

	6 Core APIs
	6.1 javax.xml.ws.Binding
	6.2 javax.xml.ws.spi.Provider
	6.2.1 Configuration
	6.2.2 Creating Endpoint Objects
	6.2.3 Creating ServiceDelegate Objects

	6.3 javax.xml.ws.spi.ServiceDelegate
	6.4 Exceptions
	6.4.1 Protocol Specific Exception Handling
	6.4.2 One-way Operations

	7 Annotations
	7.1 javax.xml.ws.ServiceMode
	7.2 javax.xml.ws.WebFault
	7.3 javax.xml.ws.RequestWrapper
	7.4 javax.xml.ws.ResponseWrapper
	7.5 javax.xml.ws.WebServiceClient
	7.6 javax.xml.ws.WebEndpoint
	7.6.1 Example

	7.7 javax.xml.ws.WebServiceProvider
	7.8 javax.xml.ws.BindingType
	7.9 javax.xml.ws.WebServiceRef
	7.9.1 Example

	7.10 javax.xml.ws.WebServiceRefs
	7.10.1 Example

	7.11 Annotations Defined by JSR-181
	7.11.1 javax.jws.WebService
	7.11.2 javax.jws.WebMethod
	7.11.3 javax.jws.OneWay
	7.11.4 javax.jws.WebParam
	7.11.5 javax.jws.WebResult
	7.11.6 javax.jws.SOAPBinding
	7.11.7 javax.jws.HandlerChain

	8 Customizations
	8.1 Binding Language
	8.2 Binding Declaration Container
	8.3 Embedded Binding Declarations
	8.3.1 Example

	8.4 External Binding File
	8.4.1 Example

	8.5 Using JAXB Binding Declarations
	8.6 Scoping of Bindings
	8.7 Standard Binding Declarations
	8.7.1 Definitions
	8.7.2 PortType
	8.7.3 PortType Operation
	8.7.4 PortType Fault Message
	8.7.5 Binding
	8.7.6 Binding Operation
	8.7.7 Service
	8.7.8 Port

	9 Handler Framework
	9.1 Architecture
	9.1.1 Types of Handler
	9.1.2 Binding Responsibilities

	9.2 Configuration
	9.2.1 Programmatic Configuration
	9.2.2 Deployment Model

	9.3 Processing Model
	9.3.1 Handler Lifecycle
	9.3.2 Handler Execution
	9.3.3 Handler Implementation Considerations

	9.4 Message Context
	9.4.1 javax.xml.ws.handler.MessageContext
	9.4.2 javax.xml.ws.handler.LogicalMessageContext
	9.4.3 Relationship to Application Contexts

	10 SOAP Binding
	10.1 Configuration
	10.1.1 Programmatic Configuration
	10.1.2 Deployment Model

	10.2 Processing Model
	10.2.1 SOAP mustUnderstand Processing
	10.2.2 Exception Handling

	10.3 SOAP Message Context
	10.4 SOAP Transport and Transfer Bindings
	10.4.1 HTTP

	11 HTTP Binding
	11.1 Configuration
	11.1.1 Programmatic Configuration
	11.1.2 Deployment Model

	11.2 Processing Model
	11.2.1 Exception Handling

	11.3 HTTP Support
	11.3.1 One-way Operations
	11.3.2 Security
	11.3.3 Session Management

	A Conformance Requirements
	Bibliography

